首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Meta-analysis techniques allow researchers to aggregate effect sizes—like standardized mean difference(s), correlation(s), or odds ratio(s)—of different studies. This leads to overall effect-size estimates and their confidence intervals. Additionally, researchers can aim for theory development or theory evaluation. That is, researchers may not only be interested in these overall estimates but also in a specific ordering or size of them, which then reflects a theory. Researchers may have expectations regarding the ordering of standardized mean differences or about the (ranges of) sizes of an odds ratio or Hedges’ g. Such theory-based hypotheses most probably contain inequality constraints and can be evaluated with the Akaike’s information criterion type (i.e., AIC-type) confirmatory model selection criterion called generalized order-restricted information criterion (GORICA). This paper introduces and illustrates how the GORICA can be applied to meta-analyzed estimates. Additionally, it compares the use of the GORICA to that of classical null hypothesis testing and the AIC, that is, the use of theory-based hypotheses versus null hypotheses. By using the GORICA, researchers from all types of fields (e.g., psychology, sociology, political science, biomedical science, and medicine) can quantify the support for theory-based hypotheses specified a priori. This leads to increased statistical power, because of (i) the use of theory-based hypotheses (cf. one-sided vs. two-sided testing) and (ii) the use of meta-analyzed results (that are based on multiple studies which increase the combined sample size). The quantification of support and the power increase aid in, for instance, evaluating and developing theories and, therewith, developing evidence-based treatments and policy.  相似文献   

2.
The idea that quantum randomness can be reduced to randomness of classical fields (fluctuating at time and space scales which are essentially finer than scales approachable in modern quantum experiments) is rather old. Various models have been proposed, e.g., stochastic electrodynamics or the semiclassical model. Recently a new model, so called prequantum classical statistical field theory (PCSFT), was developed. By this model a “quantum system” is just a label for (so to say “prequantum”) classical random field. Quantum averages can be represented as classical field averages. Correlations between observables on subsystems of a composite system can be as well represented as classical correlations. In particular, it can be done for entangled systems. Creation of such classical field representation demystifies quantum entanglement. In this paper we show that quantum dynamics (given by Schrödinger’s equation) of entangled systems can be represented as the stochastic dynamics of classical random fields. The “effect of entanglement” is produced by classical correlations which were present at the initial moment of time, cf. views of Albert Einstein.  相似文献   

3.
The paper deals with dynamics of a quantum chaotic system under influence of an environment. The effect of an environment is known to destroy the quantum coherence and can convert the quantum dynamics of a system to classical. We use a semiclassical technique for studying the process of decoherence. The condition for transition from quantum to classical dynamics is obtained in general form and checked numerically for a particular chaotic system, known as quantum the standard map on a torus. The relevance of the obtained results to the problem of correspondence between quantum and classical mechanics is briefly discussed. (c) 1996 American Institute of Physics.  相似文献   

4.
We propose a solution to the problem of time for systems with a single global Hamiltonian constraint. Our solution stems from the observation that, for these theories, conventional gauge theory methods fail to capture the full classical dynamics of the system and must therefore be deemed inappropriate. We propose a new strategy for consistently quantizing systems with a relational notion of time that does capture the full classical dynamics of the system and allows for evolution parametrized by an equitable internal clock. This proposal contains the minimal temporal structure necessary to retain the ordering of events required to describe classical evolution. In the context of shape dynamics (an equivalent formulation of general relativity that is locally scale invariant and free of the local problem of time) our proposal can be shown to constitute a natural methodology for describing dynamical evolution in quantum gravity and to lead to a quantum theory analogous to the Dirac quantization of unimodular gravity.  相似文献   

5.
A classical one-time pad allows two parties to send private messages over a public classical channel-an eavesdropper who intercepts the communication learns nothing about the message. A quantum one-time pad is a shared quantum state which allows two parties to send private messages or private quantum states over a public quantum channel. If the eavesdropper intercepts the quantum communication she learns nothing about the message. In the classical case, a one-time pad can be created using shared and partially private correlations. Here we consider the quantum case in the presence of an eavesdropper, and find the single-letter formula for the rate at which the two parties can send messages using a general quantum state as a quantum one-time pad. Surprisingly, the formula coincides with the distillable entanglement assisted by a symmetric channel, an important quantity in quantum information theory, but which lacked a clear operational meaning.  相似文献   

6.
徐峰  郑雨军 《物理学报》2013,62(21):213401-213401
量子相空间理论已用来研究物理学、化学等有关问题, 并为人们研究经典物理和量子物理的对应关系提供了一种有力工具. 在量子相空间中, 基于Wigner表象下的量子刘维尔方程, 建立分子纠缠轨线力学. 与经典分子力学方法不同, 分子纠缠轨线力学中的轨线不再是独立的, 而是“纠缠”在一起的, 这正是体系量子效应的体现. 这种半经典 的理论方法能给出体系的量子效应及具有启示意义的物理图像. 分子纠缠轨线力学被用来研究量子隧穿效应、分子光解反应动力学、自关联函数等. 本文综述了分子纠缠轨线力学最近的发展. 关键词: 纠缠轨线 量子相空间 半经典理论  相似文献   

7.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

8.
9.
A strong analog classical simulation of general quantum evolution is proposed, which serves as a novel scheme in quantum computation and simulation. The scheme employs the approach of geometric quantum mechanics and quantum informational technique of quantum tomography, which applies broadly to cases of mixed states, nonunitary evolution, and infinite dimensional systems. The simulation provides an intriguing classical picture to probe quantum phenomena, namely, a coherent quantum dynamics can be viewed as a globally constrained classical Hamiltonian dynamics of a collection of coupled particles or strings. Efficiency analysis reveals a fundamental difference between the locality in real space and locality in Hilbert space, the latter enables efficient strong analog classical simulations. Examples are also studied to highlight the differences and gaps among various simulation methods.  相似文献   

10.
11.
We analyze the dynamics of the kicked top in a deeply quantum regime. Signatures of classical chaos in the quantum dynamics that can be identified from a semiclassical treatment persist in a deeply quantum regime. Structures in the classical-phase space can also be identified in the tunneling dynamics of the quantum system. Our results show that quantum chaos is observable in the regime that is accessible to future experiments with trapped ions or cold atoms.  相似文献   

12.
A recently developed unified theory of classical and quantum chaos, based on the de Broglie-Bohm (Hamilton-Jacobi) formulation of quantum mechanics is presented and its consequences are discussed. The quantum dynamics is rigorously defined to be chaotic if the Lyapunov number, associated with the quantum trajectories in de Broglie-Bohm phase space, is positive definite. This definition of quantum chaos which under classical conditions goes over to the well-known definition of classical chaos in terms of positivity of Lyapunov numbers, provides a rigorous unified definition of chaos on the same footing for both the dynamics. A demonstration of the existence of positive Lyapunov numbers in a simple quantum system is given analytically, proving the existence of quantum chaos. Breaking of the time-reversal symmetry in the corresponding quantum dynamics under chaotic evolution is demonstrated. It is shown that the rigorous deterministic quantum chaos provides an intrinsic mechanism towards irreversibility of the Schrodinger evolution of the wave function, without invoking ‘wave function collapse’ or ‘measurements’  相似文献   

13.
Given many independent and identically-distributed (i.i.d.) copies of a quantum system described either by the state ρ or σ (called null and alternative hypotheses, respectively), what is the optimal measurement to learn the identity of the true state? In asymmetric hypothesis testing one is interested in minimizing the probability of mistakenly identifying ρ instead of σ, while requiring that the probability that σ is identified in the place of ρ is bounded by a small fixed number. Quantum Stein’s Lemma identifies the asymptotic exponential rate at which the specified error probability tends to zero as the quantum relative entropy of ρ and σ. We present a generalization of quantum Stein’s Lemma to the situation in which the alternative hypothesis is formed by a family of states, which can moreover be non-i.i.d. We consider sets of states which satisfy a few natural properties, the most important being the closedness under permutations of the copies. We then determine the error rate function in a very similar fashion to quantum Stein’s Lemma, in terms of the quantum relative entropy. Our result has two applications to entanglement theory. First it gives an operational meaning to an entanglement measure known as regularized relative entropy of entanglement. Second, it shows that this measure is faithful, being strictly positive on every entangled state. This implies, in particular, that whenever a multipartite state can be asymptotically converted into another entangled state by local operations and classical communication, the rate of conversion must be non-zero. Therefore, the operational definition of multipartite entanglement is equivalent to its mathematical definition.  相似文献   

14.
高德营  高强  夏云杰 《中国物理 B》2017,26(11):110303-110303
The exact dynamics of an open quantum system consisting of one qubit driven by a classical driving field is investigated. Our attention is focused on the influences of single-and two-photon excitations on the dynamics of quantum coherence and quantum entanglement. It is shown that the atomic coherence can be improved or even maintained by the classical driving field, the non-Markovian effect, and the atom-reservoir detuning. The interconversion between the atomic coherence and the atom-reservoir entanglement exists and can be controlled by the appropriate conditions. The conservation of coherence for different partitions is explored, and the dynamics of a system with two-photon excitations is different from the case of single-photon excitation.  相似文献   

15.
An excruciating issue that arises in mathematical, theoretical and astro-physics concerns the possibility of regularizing classical singular black hole solutions of general relativity by means of quantum theory. The problem is posed here in the context of a manifestly covariant approach to quantum gravity. Provided a non-vanishing quantum cosmological constant is present, here it is proved how a regular background space-time metric tensor can be obtained starting from a singular one. This is obtained by constructing suitable scale-transformed and conformal solutions for the metric tensor in which the conformal scale form factor is determined uniquely by the quantum Hamilton equations underlying the quantum gravitational field dynamics.  相似文献   

16.
17.
18.
The existing impressive tests for the strong equivalence principle are reviewed and their classical nature is emphasized. The possibility is raised here that intrinsic quantum spins may behave differently from orbital angular momentum in gravitational fields. The techniques developed to measure the electric dipole moment of the neutron are shown to offer hopes of testing this hypothesis. Einstein's theory predicts a null result for this experiment. This would constitute the first quantum test for the strong equivalence principle. Deviation from a null result would invalidate Einstein's theory of gravitation, as well as indicate the failure of the discrete symmetries (P, T) in gravitation.This essay received an honorable mention (1976) from the Gravity Research Foundation-Ed.  相似文献   

19.
The various physical aspects of the general relativistic principles of covariance and strong equivalence are discussed, and their mathematical formulations are analyzed. All these aspects are shown to be present in classical general relativity, although no contemporary formulation of canonical or covariant quantum gravity has succeeded to incorporate them all. This has, in part, motivated the recent introduction of a geometro-stochastic framework for quantum general relativity, in which the classical frame bundles that underlie the formulation of parallel transport in classical general relativity are replaced by quantum frame bundles. It is shown that quantum frames can take over the role played by complete sets of observables in conventional quantum theory, so that they can mediate the natural transference of the general covariance and the strong equivalence principles from the classical to the quantum general relativistic regime. This results in a geometrostochastic mode of quantum propagation in general relativistic quantum bundles, which is mathematically implemented by path integration methods based on parallel transport along horizontal lifts of geodesics for the vacuum expectation values of a quantum gravitational field in a quantum spacetime supermanifold. The covariance features of this field are embedded in a quantum gravitational supergroup, which incorporates Poincaré as well as diffeomorphism invariance, and resolves the issue of time in quantum gravity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号