首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss transport and localization properties on the insulating side of the disorder dominated superconductor‐insulator transition, described in terms of the dirty boson model. Analyzing the spectral properties of the interacting bosons in the absence of phonons, we argue that the Bose glass phase admits three distinct regimes. For strongest disorder the boson system is a fully localized, perfect insulator at any temperature. At smaller disorder, only the low temperature phase exhibits perfect insulation while delocalization takes place above a finite temperature. We argue that a third phase must intervene between these perfect insulators and the superconductor. This conducting Bose glass phase is characterized by a mobility edge in the many body spectrum, located at finite energy above the ground state. In this insulating regime purely electronically activated transport occurs, with a conductivity following an Arrhenius law at asymptotically low temperatures, while a tendency to superactivation is predicted at higher T. These predictions are in good agreement with recent transport experiments in highly disordered films of superconducting materials.  相似文献   

2.
Experimental results indicating a direct disorder-induced superconductor–insulator transition in NbTiN thin films have been reported. It has been shown that an increase in the resistance per square in the normal state is accompanied by the suppression of the critical temperature of the superconducting transition Tc according to the fermion mechanism of suppression of superconductivity by disorder. At the same time, the temperature of the Berezinskii–Kosterlitz–Thouless transition is completely suppressed at a nonzero critical temperature and, then, the ground state changes to insulating, which is characteristic of the boson model of suppression of superconductivity by disorder. It has been shown that the temperature dependences of the resistance of insulating films follow the Arrhenius activation law.  相似文献   

3.
We present the results of an experimental study of superconducting, disordered, thin films of amorphous indium oxide. These films can be driven from the superconducting phase to a reentrant insulating state by the application of a perpendicular magnetic field (B). We find that the high-B insulator exhibits activated transport with a characteristic temperature, TI. TI has a maximum value (TpI) that is close to the superconducting transition temperature (Tc) at B=0, suggesting a possible relation between the conduction mechanisms in the superconducting and insulating phases. Tp(I) and Tc display opposite dependences on the disorder strength.  相似文献   

4.
N/I/d波超导体c轴隧道结的微分电导   总被引:1,自引:0,他引:1  
以方势垒描述绝缘层,对N/I/d波超导体c轴隧道结的微分电导进行了研究.结果表明:在N/I/d波超导体c轴隧道结的隧道谱中存在V型结构、能隙外的凹陷和小的零偏压电导峰.这一结果能很好的解释相关的实验现象.  相似文献   

5.
The phase diagram of FeSi(1-x)Ge(x), obtained from magnetic, thermal, and transport measurements on single crystals, shows a discontinuous transition from Kondo insulator to ferromagnetic metal with x at a critical concentration, x(c) approximately 0.25. The gap of the insulating phase strongly decreases with x. The specific heat gamma coefficient appears to track the density of states of a Kondo insulator. The phase diagram is consistent with an insulator-metal transition induced by a reduction of the hybridization with x in conjunction with disorder on the Si/Ge ligand site.  相似文献   

6.
We study the effect of disorder on the superconductor-insulator transition in an inhomogeneous d-wave superconductor using the kernel polynomial method. As the Bogoliubov-de Gennes equations of the two-dimensional square lattice are solved self-consistently for the cases with more than 100000 unit cells, it is possible to observe the spatial fluctuations of the superconducting order parameters at the nanoscale. We find that strong spatial fluctuation of the superconducting order parameters can be introduced by disorder, and some superconducting specific order parameters are even enhanced. Moreover, we find that some isolated superconducting "islands" can survive the strong disorder, giving a boson insulator with some localized Cooper pairs. Our numerical calculations predict the existence of two sequential transitions with the increasing disorder strength: a d-wave to s-wave superconductor transition, and then an s-wave superconductor to insulator transition. The possibility of the appearance of a metallic phase between the superconducting and insulating phases is excluded by performing the lattice-size scaling of the generalized inverse participation ratio. In addition, we also discuss the effect of disorder on the optical conductivity of the d-wave superconductors.  相似文献   

7.
For nearly a half century the dominant orthodoxy has been that the only effect of the Cooper pairing is the state with zero resistivity at finite temperatures, superconductivity. In this work we demonstrate that by the symmetry of the Heisenberg uncertainty principle relating the amplitude and phase of the superconducting order parameter, Cooper pairing can generate the dual state with zero conductivity in the finite temperature range, superinsulation. We show that this duality realizes in the planar Josephson junction arrays (JJA) via the duality between the Berezinskii–Kosterlitz–Thouless (BKT) transition in the vortex–antivortex plasma, resulting in phase-coherent superconductivity below the transition temperature, and the charge-BKT transition occurring in the insulating state of JJA and marking formation of the low-temperature charge-BKT state, superinsulation. We find that in disordered superconducting films that are on the brink of superconductor–insulator transition the Coulomb forces between the charges acquire two-dimensional character, i.e. the corresponding interaction energy depends logarithmically upon charge separation, bringing the same vortex-charge-BKT transition duality, and realization of superinsulation in disordered films as the low-temperature charge-BKT state. Finally, we discuss possible applications and utilizations of superconductivity–superinsulation duality.  相似文献   

8.
无序双层六角氮化硼量子薄膜的电子性质   总被引:1,自引:0,他引:1       下载免费PDF全文
肖化平  陈元平  杨凯科  魏晓林  孙立忠  钟建新 《物理学报》2012,61(17):178101-178101
基于安德森紧束缚模型,本文研究了无序双层六角氮化硼量子薄膜的电子性质. 数值计算结果表明在双层都无序掺杂的情况下,六角氮化硼量子薄膜的电子是局域的, 其表现为绝缘体性质;而对于单层掺杂(无论是氮原子还是硼原子)的双层六角氮化硼量子薄膜, 在能谱的带尾出现了持续的迁移率边.这就说明在单层掺杂的双层六角氮化硼量子薄膜中产生了 金属绝缘体转变.这一结果证实了有序-无序分区掺杂的理论模型,为理解及调控双层六角氮化硼量子薄膜 的电子性质提供了有益的理论指导.  相似文献   

9.
We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk “poor conductors” in which Fermi energy EF is located in the region of localized states not so far from the Anderson mobility edge Ec. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model.Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems.We identify three distinct phases: ‘critical’ superconductive state formed at EF = Ec, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at EF still deeper inside a localized band. The ‘critical’ superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap Δ, that is due to many-body correlations and a new “pseudo-gap” energy scale ΔP which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive Tc. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical spectral weight. The insulating state is realized due to the presence of local pairing gap but without superconducting correlations; it is characterized by a hard insulating gap in the density of single electrons and by purely activated low-temperature resistivity ln R(T) ∼ 1/T.Based on these results we propose a new “pseudo-spin” scenario of superconductor-insulator transition and argue that it is realized in a particular class of disordered superconducting films. We conclude by the discussion of the experimental predictions of the theory and the theoretical issues that remain unsolved.  相似文献   

10.
We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.  相似文献   

11.
In dissipationless linear lattices, spatial disorder or quasiperiodic modulations in on-site potentials induce localization of the eigenstates and block the spreading of wave packets. Quasiperiodic inhomogeneities allow for the metal–insulator transition at a finite modulation amplitude already in one dimension. We go beyond the dissipationless limit and consider nonlinear quasi-periodic arrays that are additionally subjected to dissipative losses and energy pumping. We find finite excitation thresholds for oscillatory phases in both metallic and insulating regimes. In contrast to disordered arrays, the transition in the metallic and weakly insulating regimes display features of the second order phase transition accompanied by a large-scale cluster synchronization. In the limit of strong localization, we find the existence of globally stable asymptotic states consisting of several localized modes. These localization attractors and chaotic synchronization effects can be potentially implemented with polariton condensate lattices and cavity-QED arrays.  相似文献   

12.
Thin and pure Tl-films and In-films with different impurities (Ag, Te, Ge, Sb) are condensed onto a cooled substrate at 4 K. Measurements of the energy gap by means of the tunnel effect and the transition temperature of the weak-coupling superconductor thallium are carried out as a function of the degree of disorder of the films. The ratioα=2Δ 0/kT c increases proportional to the reciprocal mean free path from 3.5 for the annealed film up to 3.8 for the highly disordered film. For In-films condensed by quenching with impurity additions, one finds a linear relation between energy gap and transition temperature. In-films with Sb-additive are obtained in an amorphous phase with a ratioα=2Δ 0/kT c of 4.4. The amorphous state of the In/Sb-films is confirmed by measurements of the electric conductivity and the Hall-effect.  相似文献   

13.
Tunneling density of states measurements of disordered superconducting Al films in high Zeeman fields reveal a significant population of subgap states which cannot be explained by standard BCS theory. We provide a natural explanation of these excess states in terms of a novel disordered Larkin-Ovchinnikov phase that occurs near the spin-paramagnetic transition at the Chandrasekhar-Clogston critical field. The disordered Larkin-Ovchinnikov superconductor is characterized by a pairing amplitude that changes sign at domain walls. These domain walls carry magnetization and support Andreev bound states that lead to distinct spectral signatures at low energy.  相似文献   

14.
Thin films of La0.7Sr0.3MnO3 on MgO show a metal insulator transition and colossal magnetoresistance. The shape of this transition can be explained by intrinsic spatial inhomogeneities, which give rise to a domain structure of conducting and insulating domains at the submicrometer scale. These domains then undergo a percolation transition. The tunneling conductance and tunneling gap measured by scanning tunneling spectroscopy were used to distinguish and visualize these domains.  相似文献   

15.
Z. Ovadyahu 《Physica A》1993,200(1-4):462-468
The optical gap, Eg, of amorphous indium-oxide films is measured as a function of static disorder near the metal-insulator transition. On the insulating side of the transition the optical gap obeys a scaling relation, ΔEg = -E*Δg where E* is of the order of the Fermi energy of the given sample and gKFl. These results are ascribed to the continuous shift of the mobility-edge in the conduction band with disorder.  相似文献   

16.
We study the quantum phase transition between a band (“ionic”) insulator and a Mott-Hubbard insulator, realized at a critical value in a bipartite Hubbard model with two inequivalent sites, whose on-site energies differ by an offset . The study is carried out both in D=1 and D=2 (square and honeycomb lattices), using exact Lanczos diagonalization, finite-size scaling, and Berry's phase calculations of the polarization. The Born effective charge jump from positive infinity to negative infinity previously discovered in D=1 by Resta and Sorella is confirmed to be directly connected with the transition from the band insulator to the Mott insulating state, in agreement with recent work of Ortiz et al. In addition, symmetry is analysed, and the transition is found to be associated with a reversal of inversion symmetry in the ground state, of magnetic origin. We also study the D=1 excitation spectrum by Lanczos diagonalization and finite-size scaling. Not only the spin gap closes at the transition, consistent with the magnetic nature of the Mott state, but also the charge gap closes, so that the intermediate state between the two insulators appears to be metallic. This finding, rationalized within Hartree-Fock as due to a sign change of the effective on-site energy offset for the minority spin electrons, underlines the profound difference between the two insulators. The band-to-Mott insulator transition is also studied and found in the same model in D=2. There too we find an associated, although weaker, polarization anomaly, with some differences between square and honeycomb lattices. The honeycomb lattice, which does not possess an inversion symmetry, is used to demonstrate the possibility of an inverted piezoelectric effect in this kind of ionic Mott insulator. Received 21 May 1999  相似文献   

17.
We consider an anisotropic gap superconductor in the vicinity of the disorder-driven quantum critical point. Starting with the BCS Hamiltonian, we derive the Ginzburg-Landau action, which is a critical theory with the dynamic critical exponent, z=2. This allows us to use the parquet method to calculate the nonperturbative effect of quantum superconducting fluctuations on thermodynamics. We derive a general expression for the fluctuation magnetic susceptibility, which exhibits a crossover from the logarithmic dependence, chi proportional, variantlndeltan, valid beyond the Ginzburg region to chi proportional, variantln(1/5)deltan valid in the immediate vicinity of the transition (where deltan is the deviation from the critical disorder concentration). These nonperturbative results may describe the quantum critical behavior of overdoped high-temperature cuprates, disordered p-wave superconductors, and conventional superconducting films with magnetic impurities.  相似文献   

18.
K. Buth  U. Merkt 《Annalen der Physik》2002,11(12):843-891
In this work intentionally disordered two‐dimensional electron systems in modulation doped GaAs/GaAlAs heterostructures are studied by magnetotransport experiments. The disorder is provided by a δ‐doped layer of negatively charged beryllium acceptors. In low magnetic fields a strong negative magnetoresistance is observed that can be ascribed to magnetic‐field‐induced delocalization. At increased magnetic fields the quantum Hall effect exhibits broad Hall plateaus whose centers are shifted to higher magnetic fields, i.e. lower filling factors. This shift can be explained by an asymmetric density of states. Consistently, the transition into the insulating state of quantum Hall droplets in high magnetic fields occurs at critical filling factors around νc=0.4, i.e. well below the value 1/2 that is expected for symmetric disorder potentials. The insulator transition is characterized by the divergence of both the longitudinal resistance as well as the Hall resistance. This is contrary to other experiments which observe a finite Hall resistance in the insulating regime and has not been observed previously. According to recent theoretical studies the divergence of the Hall resistance points to quantum coherent transport via tunneling between quantum Hall droplets. The magnetotransport experiments are supplemented by simulations of potential landscapes for random and correlated distributions of repulsive scatterers, which enable the determination of percolation thresholds, densities of states, and oscillator strengths for far‐infrared excitations. These simulations reveal that the strong shift of the Hall plateaus and the observed critical filling factor for the insulator transition in high magnetic fields require an asymmetric density of states that can only be generated by a strongly correlated beryllium distribution. Cyclotron resonance on the same samples also indicates the possibility of correlations between the beryllium acceptors.  相似文献   

19.
By using a combination of detailed experimental studies and simple theoretical arguments, we identify a novel mechanism characterizing the hopping transport in the Mott insulating phase of Ca2-xSrxRuO4 near the metal-insulator transition. The hopping exponent alpha shows a systematic evolution from a value of alpha=1/2 deeper in the insulator to the conventional Mott value alpha=1/3 closer to the transition. This behavior, which we argue to be a universal feature of disordered Mott systems close to the metal-insulator transition, is shown to reflect the gradual emergence of disorder-induced localized electronic states populating the Mott-Hubbard gap.  相似文献   

20.
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号