首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interplay among the cavitation structures and the shock waves following a nanosecond laser breakdown in water in the vicinity of a concave surface was visualized with high-speed shadowgraphy and schlieren cinematography. Unlike the generation of the main cavitation bubble near a flat or a convex surface, the concave surface refocuses the emitted shock waves and causes secondary cavitation near the acoustic focus which is most pronounced when triggered by the shock wave released during the first main bubble collapse. The shock wave propagation, reflection from the concave surface and its scattering on the dominant cavity is clearly resolvable on the shadowgraphs. The schlieren approach revealed the pressure build up in the last stage of the collapse and the first stage of the rebound. A persistent low-density watermark is left behind the first collapse. The observed effects are important wherever cavities collapse near indented surfaces, such as in cavitation peening, cavitation erosion and ophthalmology.  相似文献   

2.
The nucleation and growth of cavitation bubbles few micrometers in size in water generated by a 60 ps 515 nm fiber laser is observed and visualized near nucleation threshold. The study is performed by monitoring the plasma size, the cavitation bubble size and the emitted shock waves. The latter two aspects are supported by the Gilmore model using a Noble-Abel-stiffened-gas (NASG) equations of state. For the first time, two types of cavitation events are identified and visualized that exhibit a difference of more than two orders of magnitude in the excitation energy converted to mechanical effects with minimal change in excitation laser pulse energy. The result is localized cavitation and reduced mechanical stress on water-based media with potentially positive implications for laser treatments of biological tissue.  相似文献   

3.
亚临界水中超声激励空化泡动力学分析   总被引:2,自引:2,他引:0       下载免费PDF全文
杨日福  赵超  丘泰球 《应用声学》2012,31(3):184-189
考察亚临界水中压力和温度对超声空化泡动力学的影响。应用非线性Rayleigh-Plesset方程模拟空化泡运动过程,并利用Matlab软件编程求数值解,用碘量法测定超声在亚临界水中的声空化产额。结果表明:当亚临界水的压力相似文献   

4.
The effect of the second and later pulses on the expansion dynamics of the cavitation bubble produced by multi-pulse microchip laser irradiation of a Cu target in water has been investigated. We clarified the bubble dynamics by taking shadowgraph images and measuring the bubble radius as a function of time. Shock waves were also measured to investigate the explosive expansion of the bubble. As a result, the second and later pulses did not cause an explosive expansion, and the ablation of the target by these pulses was rather mild, although they had a certain contribution to the expansion of the bubble. The energies given to the bubble expansion from the first pulse and also from the second pulse were estimated by comparing the experimental results with the calculation based on the Rayleigh model.  相似文献   

5.
Qualitative explanation for a homogeneous nucleation of acoustic cavitation bubbles in the incompressible liquid water with simple phenomenological approach has been provided via the concept of the desorbtion of the dissolved gas and the vaporization of local liquid molecules. The liquid medium has been viewed as an ensemble of lattice structures. Validity of the lattice structure approach against the Brownian motion of molecules in the liquid state has been discussed. Criterion based on probability for nucleus formation has been defined for the vaporization of local liquid molecules. Energy need for the enthalpy of vaporization has been considered as an energy criterion for the formation of a vaporous nucleus. Sound energy, thermal energy of the liquid bulk (Joule-Thomson effect) and free energy of activation, which is associated with water molecules in the liquid state (Brownian motion) as per the modified Eyring's kinetic theory of liquid are considered as possible sources for the enthalpy of vaporization of water molecules forming a single unit lattice. The classical nucleation theory has then been considered for expressing further growth of the vaporous nucleus against the surface energy barrier. Effect of liquid property (temperature), and effect of an acoustic parameter (frequency) on an acoustic cavitation threshold pressure have been discussed. Kinetics of nucleation has been considered.  相似文献   

6.
A model of cavitation bubbles is derived in liquid confined in an elastic sealed vessel driven by ultrasound. In this model, an assumption that the pressure acting on the sealed vessel due to bubble pulsations is proportional to total volume change of bubbles is made. Numerical simulations are carried out for a single bubble and for bubbles. The results show that the pulsation of a single bubble can be suppressed to a large extent in sealed vessel, and that of two matched bubbles with same ambient radius can be further suppressed. However, when two mismatched bubbles have the same ambient radii, an interesting breathing phenomenon takes place, where one bubble pulsates inversely with the other one. Due to this breathing phenomenon the suppression effect becomes weak, so the maximum radii of two mismatched bubbles can be larger than that of a single bubble or that of two matched bubbles in sealed vessel. Besides that, for two mismatched bubbles with different ambient radii, the small one in sealed vessel under some certain parameters can pulsate as strong as or even stronger than that of a single bubble in an open vessel.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(5):1893-1899
Megasonic cleaning is traditionally used for removal of particles from wafer surfaces in semiconductor industry. With the advancement of technology node, the major challenge associated with megasonic cleaning is to be able to achieve high cleaning efficiency without causing damage to fragile features. In this paper, a method based on electrochemistry has been developed that allows controlled formation and growth of a hydrogen bubbles close to a solid surface immersed in an aqueous solution irradiated with ∼1 MHz sound field. It has been shown that significant microstreaming from resonating size bubble can be induced by proper choice of transducer duty cycle. This method has the potential to significantly improve the performance of megasonic cleaning technology through generation of local microstreaming, interfacial and pressure gradient forces in close vicinity of conductive surfaces on wafers without affecting the transient cavitation responsible for feature damage.  相似文献   

8.
A review is conducted into existing work related to the role bulk cavitation plays during the interaction between a submerged structure and an underwater shock wave. This survey, dealing both with the classical works of Temperley and Cushing as well as recently published studies by the writer, is focused on two important variations from the assumptions made in earlier works. One of these variations, the possibility that water has a non-zero cavitation tension, is studied further by developing a theoretical model to predict the fluid dynamics following a free surface reflection. By introducing experimental data for comparative purposes, it is concluded that, at laboratory scale, the dynamic cavitation tension may be regarded as zero.  相似文献   

9.
 在简单拉伸载荷下高聚物粘结炸药呈现出非线性力学行为,这种非线性特性是由于材料内部损伤的演化和发展所致。采用弹性模量下降法测量了高聚物粘结炸药的损伤变量,据此建立了这类材料的损伤演化方程和本构关系,理论结果与实验结果吻合,并进一步讨论了高聚物粘结炸药的损伤度量方法和损伤特性。  相似文献   

10.
11.
A novel experimental method for the measurement of cavitation bubble dynamics is presented. The method makes use of a collimated cw HeNe laser beam that is focused onto a photodiode. A cavitation bubble centered in the laser beam leads to refraction and thus changes the diode signal. With sufficient temporal resolution of the measurement, the evolution of the bubble dynamics, and in particular, the collapse, could be well resolved (limitation is only due to diode response and oscilloscope bandwidth). In the present work this is demonstrated with cavitation bubbles generated with high-power nanosecond and femtosecond laser pulses, respectively. Bubble evolution is studied in two different liquids (water and glycerine) and at different temperatures and pressures.  相似文献   

12.
The interactions of bubbles and coal particles in 600 kHz ultrasonic standing waves (USW) field has been investigated. A high-speed camera was employed to record the phenomena occurred under the USW treatment. The formation and behaviors of cavitation bubbles were analyzed. Under the driving of these cavitation bubbles, whose size is from several microns to dozens of microns, coal particles were aggregated and then attracted by large bubbles due to the acoustic radiation forces. The results of USW-assisted flotation show a significant improvement in recoveries at 600 kHz, which indicates that the interactions of bubbles and particles in the USW field are more efficient than that in the conventional gravitational field. Furthermore, the sound pressure distribution of the USW was measured and predicted by a hydrophone. The analysis of gravity and buoyancy, primary and secondary Bjerknes forces shows that bubble-laden particles can be attracted by the rising bubbles under large acoustic forces. This study highlights the potential for USW technology to achieve efficient bubble-particle interactions in flotation.  相似文献   

13.
Pairs of unequal strength, counter-rotating vortices were produced in order to examine the inception, dynamics, and acoustic emission of cavitation bubbles in rapidly stretching vortices. The acoustic signatures of these cavitation bubbles were characterized during their inception, growth, and collapse. Growing and collapsing bubbles often produced a sharp, broadband, pop sound. The spectrum of these bubbles, and the peak resonant frequency can generally be related to quiescent flow bubble dynamics and corresponding resonant frequencies. However, some elongated cavitation bubbles produced a short tonal burst, or chirp, with frequencies on the order of a few kilohertz. Theses frequencies are too low to be related to resonant frequencies of a bubble in a quiescent flow. Instead, the frequency content of the acoustic signal during bubble inception and growth is related to the volumetric oscillations of the bubble while it interacted with vortical flow that surrounds the bubble (i.e., the resonant frequency of the vortex-bubble system). A relationship was determined between the observed peak frequency of the oscillations, the highly stretched vortex properties, and the water nuclei content. It was found that different cavitation spectra could relate to different flow and fluid properties and therefore would not scale in the same manner.  相似文献   

14.
Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.  相似文献   

15.
We present a sensitive measurement of the dissipation and the effective viscosity of a simple confined liquid (octamethylcyclotetrasiloxane) using an atomic force microscope. The experimental data show that the damping and the effective viscosity increase and present oscillations as the gap between the cantilever tip and the surface is diminished. To our knowledge, the damping and the viscosity modulation are reported here with such good accuracy for the first time. Such an experimental result is different from what has been reported earlier where only a continuous increase of the damping and the viscosity are observed.  相似文献   

16.
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (~200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (~20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.  相似文献   

17.
Liebler M  Dreyer T  Riedlinger RE 《Ultrasonics》2006,44(Z1):e319-e324
In medical applications of high intense focused ultrasound the mechanism of interaction between ultrasound waves and cavitation bubbles is responsible for several therapeutic effects as well as for undesired side effects. Based on a two-phase continuum approach for bubbly liquids, in this paper a numerical model is presented to simulate these interactions. The numerical results demonstrate the influence of the cavitation bubble cloud on ultrasound propagation. In the case of a lithotripter pulse an increased bubble density leads to significant changes in the tensile part of the pressure waveform. The calculations are verified by measurements with a fiber optical hydrophone and by experimental results of the bubble cloud dynamics.  相似文献   

18.
A new system of dynamical equations was obtained by using the perturbation and potential flow theory to couple the pulsation and surface deformation of the second-order Legendre polynomials (P2) of three bubbles in a line. The feasibility and effectiveness of the model were verified by simulating the radial oscillations, surface deformation with P2, and shape evolution of three bubbles. The spherical radial pulsation and surface deformation of the three bubbles exhibit periodic behavior. The maximum secondary Bjerknes forces (SBFs) on the three bubbles are found not to depend on the system’s resonance frequency. Within a stable region, the SBFs of the three bubbles increase with increasing sound pressure amplitude but decrease with increasing distance between the bubbles. The primary Bjerknes force (PBF) on a bubble is significantly higher than the SBF on it.  相似文献   

19.
20.
In this work we report X-Ray Diffraction (XRD) and Energy Dispersive X-Ray Spectroscopy (EDS) measurements to investigate the confined cation exchange process in saline aqueous suspensions of a synthetic clay mineral from Lithium-Fluorohectorite to Nickel-Fluorohectorite, as well as the reverse process from Nickel-Fluorohectorite to Lithium-Fluorohectorite and also from Lithium-Fluorohectorite to Sodium-Fluorohectorite. The dynamics of these cation exchanges was followed and it was observed that these processes can be faster than 1 minute. The results are compared to the observations on samples prepared by cation exchange procedures for which the exchange process was performed on the time-scale of months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号