首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interaction between glass surface and forming nanocrystals plays the important role in the formation of thin ZnO coatings crystal structure. The comparative study of the crystal structure of thin ZnO-based films and powders having similar chemical compositions was performed with the use of SEM, XRD analysis, optical, and luminescent spectroscopy. The influence of different coatings parameters (chemical composition, thickness) on the spectroscopic and morphological properties of thin films and powders reveals the structural features of the interaction between forming ZnO nanocrystals and glass surface. ZnO–SnO2 coatings and powders were prepared by liquid polymer-salt technique. This method provides the close contact between the coatings’ precursors with a surface of the glass during both the nucleation and the initial growth stage of forming oxide crystals. The interaction of nanocrystals and substrate surface is responsible for the texture formation in the ZnO films and determines some features of their optical properties.  相似文献   

2.
Dense and uniform particle films are deposited using a robust version of the convective particle assembly process. We analyze how the shape of the gas-liquid interface and the three-phase contact line govern the stability of convective deposition and, thus, the achievable quality of films. Interference microscopy indicates that a highly curved meniscus cannot compensate for the ubiquitous perturbation during deposition. A moderately curved meniscus provides flexibility to compensate and localize perturbation and enables reliable homogeneous deposition. We analyze which setup geometry and meniscus velocity yield appropriate meniscus shapes. The quality of the resulting films is analyzed and compared to the deposition conditions. Uniform films over areas beyond the centimeter range are accessible using the optimized process, which is suitable for functional particle coatings and templates for microstructured materials.  相似文献   

3.
We analyze microstructured multilayer films of poly(ethyleneimine) (PEI) and DNA by employing Raman and surface enhanced Raman spectroscopy (SERS). The microstructuring of the samples allows a simultaneous measurement of signal and reference in a single analytic process. Silver nanoparticles are implemented in the microstructured multilayers for SERS measurements. The recorded SERS spectra of PEI/DNA are dominated by the Raman bands of the DNA bases which show a larger mean enhancement than bands belonging to DNA backbone vibrations. Our results show that the combination of SERS and microstructured multilayer films provides an adapted way to characterize the polyelectrolytes as well as to measure the enhancement factor and the distance dependence for the SERS active silver nanoparticles. Furthermore, microstructured polyelectrolyte films containing SERS active nanoparticles are used for sensing molecules.  相似文献   

4.
Cathodic processes occurring in the course of molybdenum hemicarbide synthesis on molybdenum supports (Mo2C/Mo) were studied by cyclic voltammetry. The coatings synthesized were tested as catalysts in steam conversion of carbon monoxide. The catalytic activity of the Mo2C/Mo system in this reaction is higher by 1–3 orders of magnitude than that of the commercial catalyst Cu/ZnO/Al2O3. A microstructured heat-exchanging reactor was designed and fabricated on the basis of the kinetic data obtained.  相似文献   

5.
Interaction of citrus pectin with cefotaxime and 4-methyl-5-oxymethyluracyl was studied by spectrophotometric methods. New film coatings with these medicinal preparations for mesh implants were produced on the basis of the citrus pectin-polyvinyl alcohol matrix. It was demonstrated that supramolecular formations of the polymeric formulation affect the transport properties of the films. A high antibacterial activity of film coatings with cefotaxime was revealed.  相似文献   

6.
A simple and cost-effective successive ionic layer adsorption and reaction (SILAR) method was adopted to fabricate hydrophobic ZnO nanostructured surfaces on transparent indium-tin oxide (ITO), glass and polyethylene terephthalate (PET) substrates. ZnO films deposited on different substrates show hierarchical structures like spindle, flower and spherical shape with diameters ranging from 30 to 300 nm. The photo-induced switching behaviors of ZnO film surfaces between hydrophobic and hydrophilic states were examined by water contact angle and X-ray photoelectron spectroscopy (XPS) analysis. ZnO nanostructured films had contact angles of ~140° and 160°±2 on glass and PET substrates, respectively, exhibiting hydrophobic behavior without any surface modification or treatment. Upon exposure to ultraviolet (UV) illumination, the films showed hydrophilic behavior (contact angle: 15°±2), which upon low thermal stimuli revert back to its original hydrophobic nature. Such reversible and repeatable switching behaviors were observed upon cyclical exposure to ultraviolet radiation. These biomimetic ZnO surfaces exhibit good anti-reflective properties with lower reflectance of 9% for PET substrates. Thus, the present work is significant in terms of its potential application in switching devices, solar coatings and self-cleaning smart windows.  相似文献   

7.
A microstructured mesh contactor that can offer residence time of more than minutes is used for gas-liquid-solid hydrogenations and gas-liquid asymmetric hydrogenations. Applications for catalyst/chiral inductor screening and for kinetic data acquisition are demonstrated.  相似文献   

8.
《Comptes Rendus Chimie》2019,22(5):393-405
In this study, TiO2–ZnO nanostructured films prepared from different Ti/water mole ratios were deposited on glass plates by a sol–gel dip-coating method. The structural and surface properties, adherence, and photoactivity of synthesized TiO2–ZnO coatings in methylene blue degradation were investigated. Among the as-prepared TiO2–ZnO coatings from sols with different Ti/water mole ratios (1, 0.66, 0.5, and 0.4), the highest sol concentration (Ti/water mole ratio of 1) showed the highest methylene blue photodegradation of almost 80% after 400 min of UV irradiation. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Energy-dispersive X-ray (EDX), and UV-vis diffuse reflectance spectra (DRS) confirmed that at high sol concentrations (Ti/water mole ratios of 1 and 0.66), a mixed phase of anatase and rutile is formed, whereas at a Ti/water mole ratio of 0.5, just pure rutile is formed. In detail, decreasing the sol concentration increases the cracks, degree of agglomeration, and the thickness of coatings. UV-vis DRS studies also confirm that decreasing the sol concentration in synthesized TiO2–ZnO films leads to a shift in the absorption region of the coating to the UV region. Moreover, decreasing the sol concentration declines the coating adherence onto glass plates. TEM images of the TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 revealed the formation of ZnO nanorods around a spherical TiO2, which indicates the presence of strong interaction between TiO2 and ZnO nanoparticles. The TiO2–ZnO coating synthesized from sol with a Ti/water mole ratio of 1 was then evaluated at different methylene blue concentrations, pH values, and number of coatings. After five consecutive runs, no significant decrease in the photodegradation efficiency was observed. Scanning electron microscopy (SEM) picture of used coating showed a smooth and stable layer without any detachment. Thermogravimetric analysis (TG) and sonication test confirmed thermal and mechanical stabilities of this coating as well.  相似文献   

9.
Poly(m‐phenylene isophthalamide) (PMIA) is a resistant to high temperatures and chemically stable engineering material. The application as coatings and membranes, however, is limited by its poor interaction with other materials. In this report, we describe the molecular modification of PMIA through reaction with dimsyl sodium and 2‐iodine‐1‐ethanol. The substitution of 58% of amide hydrogen by ethanol (etOH) groups produces a material (MPMIA) able to develop regularly structured films on silicon substrate. The morphology of the films is dependent on the ionic strength of the precursory solution. MPMIA starts a degradation process by losing the etOH group. MPMIA has a better affinity with poly(p‐cresolformaldehyde) than with a pristine one, increasing the range of composition in which thermal stability and miscibility are observed. Thin films of these blends have different morphologies that vary from nanometric porous to two‐phase microstructured grains, according to the composition. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Cu nanoparticles (CuNPs) were successfully synthesized in situ on ZnO whiskers as a selective scaffold, which were supported in a microstructured paper matrix composed of inorganic fibers; as-prepared paper composites were easy to handle in practical use and demonstrated excellent catalytic performance in the methanol reforming process for effective hydrogen production.  相似文献   

11.
Zn片经水热反应和氟硅烷修饰构建超疏水ZnO表面   总被引:3,自引:0,他引:3  
以乙二胺为溶剂, Zn片在120、140 及160 ℃经水热反应生长出具有蛋糕形、荷叶乳突状、棒状和仙人球状等微结构的ZnO表面. 扫描电镜研究表明, 反应时间越长越有利于形成完整的微纳米结构, 反应温度较高生成的微纳米结构更规整. 140 ℃反应4 h和160 ℃反应5 h的ZnO表面经过氟硅烷修饰后表现出良好的超疏水性, 与水滴的接触角分别达到154.6°和157.3°, 滚动角分别为5°和3°. 该方法因其操作简便、成本低廉, 在锌表面制备特殊微结构和构建超疏水表面具有潜在的应用.  相似文献   

12.
We report on the formation of ordered arrays of micrometric holes on the surface of polystyrene (PS) films cast from volatile solvents in the presence of humidity at different temperatures. The formation mechanism is investigated for PS having different molecular weights, polydispersities, and carboxylic terminations. Among the chosen materials, a highly regular honeycomb microstructured morphology is obtained on the surface of films prepared with dicarboxy-terminated PS with = 100,000. Experiments and observations on film formation indicate that polar groups are playing a fundamental role in this process. Tuning the surface tension by means of polar terminations allows the film morphology to be modified and in particular the preparation of two- or three-dimensional microstructured films. Finally, we show how these structures can be replicated by soft lithography and then used in the fields of photonic crystals and organic electronics.  相似文献   

13.
Type I heterojunction films of α-Fe2O3/ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10−4 molecules degraded/photon, which was about 16 times greater than that of α-Fe2O3, and 2.5 times greater than that of ZnO. Considering that the degradation of stearic acid requires 104 electron transfers for each molecule, this represents an overall quantum efficiency of 4.60 % for the α-Fe2O3/ZnO heterojunction. Time-resolved transient absorption spectroscopy (TAS) revealed the charge-carrier behaviour responsible for this increase in activity. Photogenerated electrons, formed in the ZnO layer, were transferred into the α-Fe2O3 layer on the pre-μs timescale, which reduced electron–hole recombination. This increased the lifetime of photogenerated holes formed in ZnO, which oxidise stearic acid. The heterojunction α-Fe2O3/ZnO films grown herein show potential environmental applications as coatings for self-cleaning windows and surfaces.  相似文献   

14.
In this paper, different morphologies ZnO (disk‐like, rod‐like, and nanoparticles) were introduced into phenolic composite coatings to comparatively investigate the tribological properties. The structural and morphological characterization was conducted with Raman spectroscopy, X‐ray diffraction, and scanning electron microscopy. The tribological performances of composite coatings were evaluated using ring‐on‐block tester under dry condition at room temperature. Experimental results indicated that composite coatings filled with 1 wt% ZnO micro‐disks possessed the optimal tribological performances. It was attributed to the strong interfacial interaction between ZnO micro‐disks and phenolic matrix induced by their specific polar structure. Moreover, different loads and sliding speeds were employed to further evaluate the tribological performances of ZnO micro‐disks/phenolic composite coatings. The outcome revealed that ZnO micro‐disks were potential anti‐wear fillers under harsh condition.  相似文献   

15.
Atomic‐layer deposition (ALD) is a thin‐film growth technology that allows for conformal growth of thin films with atomic‐level control over their thickness. Although ALD is successful in the semiconductor manufacturing industry, its feasibility for nanoparticle coating has been less explored. Herein, the ALD coating of TiO2 layers on ZnO nanoparticles by employing a specialized rotary reactor is demonstrated. The photocatalytic activity and photostability of ZnO nanoparticles coated with TiO2 layers by ALD and chemical methods were examined by the photodegradation of Rhodamine B dye under UV irradiation. Even though the photocatalytic activity of the presynthesized ZnO nanoparticles is higher than that of commercial P25 TiO2 nanoparticles, their activity tends to decline due to severe photocorrosion. The chemically synthesized TiO2 coating layer on ZnO resulted in severely declined photoactivity despite the improved photostability. However, ultrathin and conformal ALD TiO2 coatings (≈0.75–1.5 nm) on ZnO improved its photostability without degradation of photocatalytic activity. Surprisingly, the photostability is comparable to that of pure TiO2, and the photocatalytic activity to that of pure ZnO.  相似文献   

16.
Surface-patterned ZnO thin films were fabricated by direct imprinting on ZnO sol and subsequent annealing process. The polymer-based ZnO sols were deposited on various substrates for the nanoimprint lithography and converted to surface-patterned ZnO gel films during the thermal curing nanoimprint process. Finally, crystalline ZnO films were obtained by subsequent annealing of the patterned ZnO gel films. The optical characterization indicates that the surface patterning of ZnO thin films can lead to an enhanced transmittance. Large-scale ZnO thin films with different patterns can be fabricated by various easy-made ordered templates using this combination of sol–gel and nanoimprint lithography techniques.  相似文献   

17.
Hybrid polymer solutions suitable for UV-nanoimprint were synthesized by combination of an alkoxysilane binder mixture with silica nanoparticles. Hydrolysis and condensation reactions were monitored by NMR and viscosity measurements. Thereby long-term stable systems were produced as a prerequisite for industrial application. Dip-coating of glass substrates and subsequent UV-curing yielded thin films. Their thermal densification and microstructural evolution resulted in pure glassy porous coatings, which were in detail characterized by N2-sorption measurements and ellipsometric porosimetry. Results emphasize the importance of the binder-particle interaction within these materials that are destined for the fabrication of microstructured surfaces by cost efficient and industrially feasible UV-based soft lithography. Structured glassy layers with high inorganic content show thermal stability up to >500 °C and have a high structure accuracy >85 %.  相似文献   

18.
A commercially available fouling release (adsorbed foulants removed by shear flow) coating based on poly(dimethylsiloxane) and a commercial marine epoxy primer have been analyzed by diffusing wave spectroscopy and by thermal and dynamical mechanical methods. Diffusing wave spectroscopy reveals 7–9 distinct relaxation intervals over short (minutes) to long (20 hour) time scales. Several junctures of these intervals are shown to correlate with mechanically determined film formation parameters, such as set to touch times, tack free times, and dry through times. Thickness series of coatings made by casting illustrate similarities and distinct differences between the epoxy primer and poly(dimethylsiloxane)-based fouling release coating formulations. Several low temperature β transitions are resolved in the fouling release coatings in addition the α (Tg) transition in both formulations. A scaling analysis of the thickness series data shows that both the primer and the top coat exhibit a negative exponent for thickness; −0.77 for the epoxy; −1.2 for the top coat. Stress-strain experiments reveal further significant difference between these two types of elastomers. The elastic modulus for the epoxy is 1000-fold higher than for the topcoat. A small elastic modulus is thought to be key in the successful functioning of fouling release coatings. Analyses of substrate effects (wire mesh, fiberglass braid) and of coating or loading levels on dynamical mechanical properties, in comparison with thickness series of thin films are presented. The woven braid offers the advantage that it can be loaded more easily than can wire mesh substrates. The negative exponents show that thinner coatings may be more mechanically resilient than thicker coatings, as the ability to store and dissipate mechanical energy decreases as thickness increases.  相似文献   

19.
The microstructure, optical, photoluminescence and electrical properties of ZnO based films deposited onto FTO glass substrates by ultrasonic spray pyrolysis have been investigated. For comparison and a better understanding of physical properties of indium- and aluminum-doped ZnO and undoped ZnO thin films, X-ray diffraction analysis, photoluminescence spectra, optical, SEM texture and electrical conductivity analyses were performed. The AZO and IZO films exhibit the nanofiber structure with diameters 260 and 400 nm. X-ray diffraction showed all samples to be polycrystalline with hexagonal ZnO. The optical band gaps of the films were varied by Al and In dopants. The photoluminescence spectra of the films show a weak broad in the visible range and shifted to green emission for indium doping and to the green blue emission for aluminum as dopant. The width of the PL spectra for aluminum-doped films is too large compared to those of the indium-doped ones. The electrical conductivity of the ZnO film changes with Al and In dopants. The position of donor levels changes with In and Al dopants and approaches the conduction band level with the metal dopants. The obtained results suggest that the metal doping has a clear effect upon the growth, optical, photoluminescence and electrical conductivity properties of the ZnO films.  相似文献   

20.
Theoretical and Experimental Chemistry - A comparative analysis of the applicability of templating techniques for the formation of microstructured polylactide films is performed. The techniques for...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号