首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High resolution Compton profiles have been measured in the single crystal of CeRu(2)Si(2) above and below the Kondo temperature to elucidate the change of the Ce-4f electron from localized to itinerant states. Two-dimensional electron occupation number densities projected on the first Brillouin zone, which are obtained after a series of analyses, clearly specify the difference between itinerant and localized states. The contribution of Ce-4f electrons to the electronic structure is discussed by contrast with a band calculation.  相似文献   

2.
The three-dimensional electronic structure and the nature of Ce 4f electrons of the Kondo insulator CeRu4Sn6 are investigated by angle-resolved photoemission spectroscopy, utilizing tunable photon energies. Our results reveal (i) the three-dimensional k-space nature of the Fermi surface, (ii) the localized-to-itinerant transition of f electrons occurs at a much high temperature than the hybridization gap opening temperature, and (iii) the “relocalization” of itinerant f-electrons below 25 K, which could be the precursor to the establishment of magnetic order.  相似文献   

3.
When an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state and lowly excited triplet state cross, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S = 1 Kondo impurity in the presence of low-lying triplet-singlet excitations is exposed and estimates of the magnetic susceptibility and the electric conductance are presented, together with applications for molecule chemisorption on metallic substrates.  相似文献   

4.
Quantum corrals present interesting properties due to the combination of confinement and, in the case of elliptical corrals, to their focalizing properties. We study the case when two magnetic impurities are added to the non-interacting corral, where they interact via a superexchange AF interaction J with the surface electrons in the ellipse. Previous results showed that, when both impurities are located at the foci of the system, they experience an enhanced magnetic interaction, as compared to the one they would have in an open surface. For small J and even filling, they are locked in a singlet state, which weakens for larger values of this parameter. When J is much larger than the hopping parameter of the electrons in the ellipse, both spins decorrelate while forming a local singlet with the electrons of the ellipse, thus presenting a confined RKKY–Kondo transition.We interpret this behaviour by means of the von Neumann entropy between the localized impurities and the itinerant electrons of the ellipse: for small J the entropy is nearly zero while for large J it is maximum. In addition, the local density of states provides us with a concrete experimental tool for detecting the Kondo regime.  相似文献   

5.
Ce 4d-4f resonant angle-resolved photoemission spectroscopy was carried out to study the electronic structure of strongly correlated Ce 4f electrons in a quasi-two-dimensional nonmagnetic heavy-fermion system CeCoGe1.2Si0.8. For the first time, dispersive coherent peaks of an f state crossing the Fermi level, the so-called Kondo resonance, are directly observed together with the hybridized conduction band. Moreover, the experimental band dispersion is quantitatively in good agreement with a simple hybridization-band picture based on the periodic Anderson model. The obtained physical quantities, i.e., coherent temperature, Kondo temperature, and mass enhancement, are comparable to the results of thermodynamic measurements. These results manifest an itinerant nature of Ce 4f electrons in heavy-fermion systems and clarify their microscopic hybridization mechanism.  相似文献   

6.
We report the presence of spin dimerization in the ground state of the one-dimensional Kondo lattice model at quarter filling. The emergence of this new phase of the Kondo lattice can be traced to the form of the RKKY interaction between the localized moments and provides the first example of dimerization induced indirectly by itinerant electrons. We propose this dimer ordering as the driving mechanism of the spin-Peierls phase observed in the quasi-one-dimensional organic compounds (Per)2M(mnt)(2) (M=Pt, Pd). Moreover, this suggests that a richer phase diagram than the Doniach paradigm may be needed to accommodate the physics of heavy fermion materials.  相似文献   

7.
8.
119Sn Mössbauer spectroscopy was used to study the fluctuations of antiferromagnetic domains in the heavy-fermion CePdSn Kondo compound. The temperature evolution of the experimental spectra was described within both two- and multi-level relaxation models. The difference between these two approaches is discussed. The temperature dependence of the relaxation rate of the domain’s magnetization and the density of itinerant electrons near the tin atoms are investigated.  相似文献   

9.
A comparison of high-resolution, angle-resolved photoemission spectroscopy (ARPES) data with ab initio band-structure calculations by density functional theory for the anticipated Kondo insulator FeSi shows that the experimental dispersions can quantitatively be described by an itinerant behavior provided that an appropriate self-energy correction is included, whose real part describes the band renormalization due to interactions of the Fe 3d electrons. The imaginary part of the self-energy, on the other hand, determines the linewidth of the quasiparticle peaks in the ARPES data. We use a model self-energy which consistently describes both the renormalized single-particle dispersion and the energy-dependent linewidth of the Fe 3d bands. These results are clear evidence that FeSi is an itinerant semiconductor whose properties can be explained without a local Kondo-like interaction.  相似文献   

10.
High-pressure 149Sm nuclear forward scattering of synchrotron radiation and specific heat measurements have been performed on the intermediate valent Kondo insulator SmB6. The results show that at a critical pressure p(c) approximately = 6 GPa, where the charge gap closes, a first order transition occurs to a magnetically ordered state, which shows typical features of trivalent samarium compounds. The similarity with SmS stresses the role of local correlations and gives important insight into the debate on the local or itinerant character of the f electrons in heavy fermion systems.  相似文献   

11.
We consider electrons confined to a quantum dot interacting antiferromagnetically with a spin-1 / 2 Kondo impurity. The electrons also interact among themselves ferromagnetically with a dimensionless coupling J , where J =1 denotes the bulk Stoner transition. We show that as J approaches 1 there is a regime with enhanced Kondo correlations, followed by one where the Kondo effect is destroyed and impurity is spin polarized opposite to the dot electrons. The most striking signature of the first, Stoner-enhanced Kondo regime is that a Zeeman field increases the Kondo scale, in contrast to the case for noninteracting dot electrons. Implications for experiments are discussed.  相似文献   

12.
We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferromagnetically or ferromagnetically with the itinerant electrons, respectively. Using the density-matrix renormalization group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter |J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wavelengths. These results shed new light on the zero temperature magnetic phase diagram for these models.  相似文献   

13.
A comprehensive theory of electron spin resonance (ESR) for a Luttinger liquid state of correlated metals is presented. The ESR measurables such as the signal intensity and the linewidth are calculated in the framework of Luttinger liquid theory with broken spin rotational symmetry as a function of magnetic field and temperature. We obtain a significant temperature dependent homogeneous line broadening which is related to the spin-symmetry breaking and the electron-electron interaction. The result crosses over smoothly to the ESR of itinerant electrons in the noninteracting limit. These findings explain the absence of the long-sought ESR signal of itinerant electrons in single-wall carbon nanotubes when considering realistic experimental conditions.  相似文献   

14.
We consider the one-dimensional t - J model, which consists of electrons with spin S on a lattice with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t. Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson model in the limit), which interacts with the correlated conduction states of the host. The lattice model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lattice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field. The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling. The impurity can localize up to one itinerant electron and has in general mixed valent properties. Groundstate properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity. Received: 31 December 1997 / Accepted: 17 March 1998  相似文献   

15.
We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta = 0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.  相似文献   

16.
We propose the notion of a spin-selective Kondo insulator, which provides a fundamental mechanism to describe the ferromagnetic phase of the Kondo lattice model with antiferromagnetic coupling. This unveils a remarkable feature of the ferromagnetic metallic phase: the majority-spin conduction electrons show metallic while the minority-spin electrons show insulating behavior. The resulting Kondo gap in the minority-spin sector, which is due to the cooperation of ferromagnetism and partial Kondo screening, evidences a dynamically induced commensurability for a combination of minority-spin electrons and parts of localized spins. Furthermore, this mechanism predicts a nontrivial relation between the macroscopic quantities such as electron magnetization, spin polarization, and electron filling.  相似文献   

17.
Tunneling spectra obtained on and near Co atoms adsorbed on Ag(111) show at 5 to 6 K a Kondo resonance that appears as a characteristic dip around the Fermi energy. The feature is present up to 1.5 nm around Co atoms adsorbed on terraces with the surface state onset in the occupied region of the density of states. On a narrow terrace, where the surface state onset lies in the unoccupied region of the density of states, it is only present up to 0.5 nm. This difference demonstrates directly the importance of the surface state electrons in the observation of the surface Kondo resonance.  相似文献   

18.
The T=0 transport properties of a wire interacting with a lateral two-level quantum dot are studied by using an exact numerical calculation. The wire conductance, the spin–spin correlation and the Kondo temperature are obtained as a function of the dot level energy spacing. When the dot has two electrons and spin SD1, the wire current is totally quenched by the S=1 Kondo effect. The Kondo temperature is maximum at the singlet–triplet transition and its dependence upon the dot energy spacing follows a non-universal scaling law.  相似文献   

19.
In this paper, we discuss the spin-reflection-positivity method introduced by Lieb [E. H. Lieb, Phys. Rev. Lett. 62:1201 (1989)] and its applications to strongly correlated electron systems in a pedagogical manner. We emphasize the important role played by the sign rule of the ground-state wave function in studying a many-body system. To make our explanation more readable, we shall first review some well-known one-dimensional examples and recall the Lieb–Mattis theorem on the Heisenberg localized spin models. Then, after introducing the general theory of spin-reflection positivity, we show in detail how to use it to overcome the sign problem caused by the fermion characteristics of itinerant electrons in strongly correlated models. Finally, we establish several rigorous results on the Hubbard model, the periodic Anderson model and the Kondo lattice model.  相似文献   

20.
A new kind of phase transition is proposed for lattice fermion systems with simplified f 2 configurations at each site. The free energy of the model is computed in the mean-field approximation for both the itinerant state with the Kondo screening, and a localized state with the crystalline electric field (CEF) singlet at each site. The presence of a first-order phase transition is demonstrated in which the itinerant state changes into the localized state toward lower temperatures. In the half-filled case, the insulating state at high temperatures changes into a metallic state, in marked contrast with the Mott transition in the Hubbard model. For comparison, corresponding states are discussed for the twoimpurity Kondo system with f 1 configuration at each site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号