首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This paper gives methods to calculate the pairing temperature T*,at which a pseudogap is opened,and the superconducting temperature Tc,at which superconductivity appears,in the high-Tc cuprates,and demonstrates directly that at Tc < T < T* the pseudogap is the gap of Cooper pair without long-range phase coherence,and at T < Tc there is long-range phase coherence between Cooper pairs.Based on the above clear physical picture on the pseudogap state and our mechanism for the ac Josephson effect,this paper proposes that there should be a novel oscillatory current in P-I-P junction,induced by a constant bias on the junction.Here,P represents the high-Tc curates in the pseudogap state,where Cooper pairs do not have long-range phase coherence,and I represents the thin insulating barrier.This paper conjectures that there is a possible high-temperature superconductivity in the heavily underdoped high-Tc cuprates.  相似文献   

2.
It is shown that the superconducting current flowing though a polymer in a superconductor-polymer-superconductor Josephson structure is due to resonant tunneling of Cooper pairs. The critical current and the thickness of the polymer in which the superconducting current is observed depend on the coherence length of a Cooper pair in the superconductor contacting the polymer.  相似文献   

3.
In a device with a superconductor coupled to two parallel quantum dots (QDs) the electrical tunability of the QD levels can be used to exploit nonclassical current correlations due to the splitting of Cooper pairs. We experimentally investigate the effect of a finite potential difference across one quantum dot on the conductance through the other completely grounded QD in a Cooper pair splitter fabricated on an InAs nanowire. We demonstrate that the nonlocal electrical transport through the device can be tuned by electrical means and that the energy dependence of the effective density of states in the QDs is relevant for the rates of Cooper pair splitting (CPS) and elastic cotunneling. Such experimental tools are necessary to understand and develop CPS-based sources of entangled electrons in solid-state devices.  相似文献   

4.
The high-field critical behavior of type-II superconductors with weak disorder is dominated by the Landau levels of Cooper pairs. The macroscopic degeneracy of Landau manifolds suppresses phase coherence and eliminates the Abrikosov transition in dimensions two and three. A novel phase transition, unrelated to the conventional Abrikosov transition, is predicted to take its place. At this transition the normal state is unstable to the charge-density wave of Cooper pairs. The nature of this new state is discussed. This phase should be most readily observable in layered materials at fields > 1–10T.  相似文献   

5.
Using exact diagonalization in the disk geometry we predict a novel even-odd effect in the Coulomb-blockade spectra of vertically coupled double quantum dots under an external magnetic field. The even-odd effect in the tunneling conductance is a direct manifestation of spontaneous interlayer phase coherence, and is similar to the even-odd resonance in the Cooper pair box problem in mesoscopic superconducting grains. Coherent fluctuations in the number of Cooper pairs in superconductors are analogous to the fluctuations in the relative number difference between the two layers in quantum Hall droplets.  相似文献   

6.
We study intrinsic noise of current in a superconducting single-electron transistor, taking into account both coherence effects and Coulomb interaction near a Cooper pair resonance. Because of this interplay, the statistics of tunneling events deviates from the Poisson distribution and, more important, it shows even-odd asymmetry in the transmitted charge. The zero-frequency noise is suppressed significantly when the quasiparticle tunneling rates are comparable to the coherent oscillation frequency of Cooper pairs.  相似文献   

7.
An atomic grating generated by a pulsed standing-wave laser field is proposed to manipulate the superfluid state in a quantum degenerate gas of fermionic atoms. We show that in the presence of atomic Cooper pairs, the density oscillations of the gas caused by the atomic grating exhibit a much longer coherence time than that in the normal Fermi gas. Our result indicates that the technique of a pulsed atomic grating is a potential candidate to detect the atomic superfluid state in a quantum degenerate Fermi gas.  相似文献   

8.
We explore the photonic (bright) side of the dynamical Coulomb blockade (DCB) by measuring the radiation emitted by a dc voltage-biased Josephson junction embedded in a microwave resonator. In this regime Cooper pair tunneling is inelastic and associated with the transfer of an energy 2eV into the resonator modes. We have measured simultaneously the Cooper pair current and the photon emission rate at the resonance frequency of the resonator. Our results show two regimes, in which each tunneling Cooper pair emits either one or two photons into the resonator. The spectral properties of the emitted radiation are accounted for by an extension to DCB theory.  相似文献   

9.
Superconductivity could be seen as a Bose-Einstein condensation (BEC) of Cooper pairs. However, the creation and annihilation operators of Cooper pairs do not satisfy the bosonic commutation relations and then, the mentioned viewpoint has a weakness in its foundation. In this work, we introduce the concept of collective Cooper pairs (CCP) as linear combinations of Cooper pairs and prove their bosonic nature at the dilute limit. This bosonic nature is given rise from their diffuse character on the Cooper pairs, which permits the accumulation of many collective pairs at a single quantum state. Moreover, the superconducting ground state proposed by Bardeen, Cooper and Schrieffer (BCS) can be written in terms of these collective Cooper pairs, which means that the BCS theory is consistent with a possible BEC theory of superconductivity based on collective Cooper pairs. Finally, we calculate the energy spectra and the BEC critical temperature of CCP.  相似文献   

10.
It is shown that Dirac-type neutrinos display BCS superfluidity for any nonzero mass. The Cooper pairs are formed by attractive scalar Higgs boson exchange between left- and right-handed neutrinos; in the standard SU(2) x U(1) theory, right-handed neutrinos do not couple to any other boson. The value of the gap, the critical temperature, and the Pippard coherence length are calculated for arbitrary values of the neutrino mass and chemical potential. Although such a superfluid could conceivably exist, detecting it would be a major challenge.  相似文献   

11.
We study the dynamical Casimir effect in the presence of a finite coherence time, which is associated with a finite quality factor of the optical cavity. We use the time refraction model, where a fixed cavity with a modulated optical medium, replaces the empty cavity with a vibrating mirror. Temporal coherence is described with the help of cavity quasi-mode operators. Asymptotic expressions for the number of photon pairs generated from vacuum are derived.  相似文献   

12.
Development of the STM and ARPES spectroscopy enabled to reach the resolution sufficient for probing the particle-hole entanglement in superconducting materials, even above the critical temperature Tc. On a quantitative level one can characterize such entanglement in terms of the Bogoliubov angle which determines to what extent the particles and holes constitute the effective quasiparticles. In classical superconductors, where the phase transition is related to formation of the Cooper pairs almost simultaneously accompanied by onset of their long-range phase coherence, the Bogoliubov angle is slanted (due to finite particle-hole mixing) all the way up to Tc. In the high temperature superconductors and in superfluid ultracold fermion atoms near the Feshbach resonance the situation is different because the preformed pairs can exist above Tc albeit loosing coherence due to the strong quantum fluctuations. We discuss a generic temperature dependence of the Bogoliubov angle in such pseudogap state indicating a novel, non-BCS behavior. For analysis we use the two-component model describing the pairs coexisting with single fermions and study selfconsistently their feedback effects by the similarity transformation originating from the renormalization group approach.  相似文献   

13.
Superconductivity is not considered as a Bose-Einstein condensation, because the creation and annihilation operators of Cooper pairs do not satisfy bosonic commutation relations. However, collective pairs can be constructed by a linear combination of Cooper pairs and we demonstrate in this Letter that these collective Cooper pairs have bosonic nature. In addition, the Bardeen-Cooper-Schrieffer (BCS) superconducting ground state can be built by means of these pairs and in consequence, could be treated as a Bose-Einstein condensate.  相似文献   

14.
This paper points out that the Landau criterion for macroscopic superfluidity of He II is only a criterion for microscopic superfluidity of 4He, extends the Landau criterion to microscopic superconductivity in fermions (electron and hole) system and system with Cooper pairs without long-range phase coherence. This paper gives another three non-superconductive systems that are of microscopic superconductivity. This paper demonstrates that one application of microscopic superconductivity is to establish room temperature electronics of the high-Tc cuprates.  相似文献   

15.
在文中给出了库柏对的两种不同表达形式。发现用由对算符组成的哈密顿量来计算更方便,用这些对算符对易性质,而不是把它们看成费米子算符的组合产物。这样一来,研究的库柏对相互作用问题也把库柏对看成对算符。文中解决了两个库柏对相互作用问题,并讨论了推广到多库柏系统的情况。  相似文献   

16.
New generation of Cooper pair splitters defined on hybrid nanostructures are devices with high tunable coupling parameters. Transport measurements through these devices revealed clear signatures of interference effects and motivated us to introduce a new model, called the 3-sites model. These devices provide an ideal playground to tune the Cooper pair splitting (CPS) efficiency on demand, and displays a rich variety of physical phenomena. In the present work we analyze theoretically the conductance of the 3-sites model in the linear and non-linear regimes and characterize the most representative features that arise by the interplay of the different model parameters. In the linear regime we find that the local processes typically exhibit Fano-shape resonances, while the CPS contribution exhibits Lorentzian-shapes. Remarkably, we find that under certain conditions, the transport is blocked by the presence of a dark state. In the non-linear regime we established a hierarchy of the model parameters to obtain the conditions for optimal efficiency.  相似文献   

17.
于扬 《物理》2005,34(8):578-582
超导体中的电子结成库珀对,凝聚到可以用一个宏观波函数来描绘的能量基态,该波函数的位相是代表了成百万库珀对集体运动的宏观变量.以约瑟夫森结为基础元件的超导约瑟夫森器件,使人们能够控制并测量一个超导体的位相和库珀对数目,因此是研究宏观量子现象的理想系统.文章回顾了约瑟夫森器件中的宏观量子现象研究的发展历程,介绍了当前超导约瑟夫森器件在量子计算中的重要应用,并对它们的未来作了简要的展望.  相似文献   

18.
A counterpart of the Mollow triplet (luminescence line shape of a two-level system under coherent excitation) is obtained for the case of incoherent excitation in a cavity. The system acquires coherence through the strong-coupling between the cavity and the emitter. Analytical expressions, in excellent agreement with numerical results, pinpoint analogies and differences between the conventional resonance fluorescence spectrum and its cavity QED analogue under incoherent excitation. Most notably, the satellites broaden and split sublinearly with increasing incoherent pumping.  相似文献   

19.
Lamothe E  Lundeberg LD  Kapon E 《Optics letters》2011,36(15):2916-2918
We apply the modal coherence theory to evaluate the spatial mode structure of a 2×2 phase-coupled array of vertical cavity surface emitting lasers (VCSELs). The eigenmode structure is extracted for different pump currents by measuring the degree of spatial coherence of all VCSEL pairs in the array. The results reveal the impact of optical disorder and spatial hole burning on the modal discrimination. The approach is useful more generally for the evaluation of spatial mode content of other laser array.  相似文献   

20.
The effect of spontaneously generated coherence (SGC) on the quantum heat engine (QHE) consisting of a laser system is studied in terms of its dynamical evolution and the generation of coherences. The QHE is coupled to the two thermal photon reservoirs, a squeezed thermal bath as well as to a cavity mode. The coherence associated with the transition interacting with squeezed reservoir and the average thermal photon number of the hot (as well as cold) reservoir shows a non monotonous behavior between them. The dynamics along with generated coherences of the system and the laser power emitted depend sensitively on the hot, cold and squeezed reservoir parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号