首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Recent theoretical investigations of the radical/π-bond addition between single-ring aromatic hydrocarbons highlight the importance of this category of reactions for the formation of PAH intermediates and soot. The present investigation extends the theory of the radical/π-bond addition reactions to the o-benzyne + cyclic C(5) hydrocarbons systems. The calculations, performed using the uB3LYP/6-311+G(d,p) method, have addressed the possible role of the reaction between o-benzyne and cyclopentadiene in the formation of indene through the fragmentation of the bicyclo intermediate benzonorbornadiene. The complex potential energy surface for the reaction between o-benzyne and cyclopentadienyl radical was also investigated. In this case, the formation of the bicyclo benzonorbornadienyl radical and its subsequent fragmentation to indenyl radical and acetylene is not the main reaction pathway, although it could be relevant at relatively high temperatures. At lower temperatures, the isomerization reactions, which lead to the formation of a variety of multiring compounds, are dominant.  相似文献   

2.
The experimental investigations performed in the 1960s on the o-benzyne + benzene reaction as well as the more recent studies on reactions involving π-electrons highlight the importance of π-bonding for different combustion processes related to PAH's and soot formation. In the present investigation radical/π-bond addition reactions between single-ring aromatic compounds have been proposed and computationally investigated as possible pathways for the formation of two-ring fused compounds, such as naphthalene, which serve as precursors to soot formation. The computationally generated optimized structures for the stationary points were obtained with uB3LYP/6-311+G(d,p) calculations, while the energies of the optimized complexes were refined using the uCCSD(T) method and the cc-pVDZ basis set. The computations have addressed the relevance of a number of radical/π-bond addition reactions including the singlet benzene + o-benzyne reaction, which leads to formation of naphthalene and acetylene through fragmentation of the benzobicyclo[2,2,2]octatriene intermediate. For this reaction, the high-pressure limit rate constants for the individual elementary reactions involved in the overall process were evaluated using transition state theory analysis. Other radical/π-bond addition reactions studied were between benzene and triplet o-benzyne, between benzene and phenyl radical, and between phenyl radicals, for all of which potential energy surfaces were produced. On the basis of the results of these reaction studies, it was found necessary to propose and subsequently confirm additional, alternative pathways for the formation of the types of PAH compounds found in combustion systems. The potential energy surface for one reaction in particular, the phenyl + phenyl addition, is shown to contain a low-energy channel leading to formation of naphthalene that is energetically comparable to the other examined conventional pathways leading to formation of biphenyl compounds. This channel is the first evidence of a reaction which involves an aromatic radical adding to the nonradical π-bond site of another aromatic radical which leads directly to a fused ring structure.  相似文献   

3.
Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(?)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(?)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.  相似文献   

4.
The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactivity of the C2F radical. Various reaction channels are considered. The most kinetically competitive channel is the quasi-direct hydrogen-abstraction route forming P5 HCCF + OH. At the CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels, the overall H-abstraction barriers (4.5, 4.7, and 4.2 kcal/mol) for the C2F + H2O reaction are comparable to the corresponding values (5.5, 3.7, and 5.7 kcal/mol) for the analogous C2H + H2O reaction. This suggests that C2F is a reactive radical like the extensively studied C2H, in contrast to the situation of the CF and CF2 radicals that have much lower reactivity than the corresponding hydrocarbon species. Thus, the C2F radical is expected to play an important role in the combustion processes of the carbon-fluorine chemistry. Furthermore, addition of a second H2O can catalyze the reaction with the H-abstraction barrier significantly reduced to a marginally zero value (0.5 kcal/mol). This is also indicative of the potential relevance of the title reactions in the low-temperature atmospheric chemistry.  相似文献   

5.
Ab initio G3(MP2,CC)//B3LYP calculations of the potential energy surface (PES) for the formation of indene involving hydrocarbon species abundant in combustion, including benzene, phenyl, propargyl, and methyl radicals, and acetylene, have been performed to investigate the build-up of an additional cyclopenta moiety over the existing six-member aromatic ring. They were followed by statistical calculations of high-pressure-limit thermal rate constants in the temperature range of 300-3000 K for all reaction steps utilizing conventional Rice-Ramsperger-Kassel-Marcus (RRKM) and transition-state (TST) theories. The hydrogen abstraction acetylene addition (HACA) type mechanism, which involves the formation of benzyl radical followed by addition of acetylene, is shown to have low barriers (12-16 kcal/mol) and to be a viable candidate to account for indene formation in combustion flames, such as the 1,3-butadiene flame, where this mechanism was earlier suggested as the major indene formation route (Granata et al. Combust. Flame 2002, 131, 273). The mechanism of indene formation involving the addition of propargyl radical to benzene and rearrangements on the C9H9 PES is demonstrated to have higher barriers for all reaction steps as compared to an alternative pathway, which starts from the recombination of phenyl and propargyl radicals and then proceeds by activation of the C9H8 adducts by H abstraction or elimination followed by five-member ring closure in C9H7 and H addition to the 2-indenyl radical. The suggested pathways represent potentially important contributors to the formation of indene in combustion flames, and the computed rate constants can be utilized in kinetic simulations of the reaction mechanisms leading to indene and to higher cyclopentafused polycyclic aromatic hydrocarbons (CP-PAH).  相似文献   

6.
Kinetics and mechanisms for NH3 reactions with ClOx (x = 0-4) radicals have been investigated at the G2M level of theory in conjunction with statistical theory calculations. The geometric parameters of the species and stationary points involved in the reactions have been optimized at the B3LYP/6-311+G(3df,2p) level of theory. Their energetics have been further refined with the G2M method. The results show that the H-abstraction process is the most favorable channel in each reaction and the barriers predicted in decreasing order are OClO > ClO > Cl > ClO3 > ClO4. All reactions were found to occur by hydrogen-bonding complexes; the rate constants for these complex metathetical processes have been calculated in the temperature range 200-2000 K by the microcanonical VTST and/or RRKM theory (for ClO4 + NH3) with Eckart tunneling and multiple reflection corrections. The predicted rate constants are in good agreement with the available experimental data.  相似文献   

7.
The geometries and energetics of transition states (TS) for radical deactivation reactions, including competitive combination and disproportionation reactions, have been studied for the modeled 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated free‐radical polymerization of acrylonitrile with quantum mechanical calculations at the DFT/UB3‐LYP/6‐311+G(3df,2p)//(U)AM1 level of theory (where DFT is density functional theory, AM1 is Austin model 1, and UAM1 is unrestricted Austin model 1). A method providing reasonable starting geometries for an effective search for TS between the TEMPO radical and 1‐cyanopropyl radical mimicking the growing polyacrylonitrile macroradical is shown. For the hydrogen atom abstraction reaction by the TEMPO radical from the 1‐cyanopropyl radical, practically one TS has been found, whereas for the combination reaction of the radicals, several TS have been found, mainly differing in out‐of‐plane angle α of the N? O bond in the TEMPO structure. α in the TS is correlated with the activation energy, ΔE, determined from the single‐point calculation at the DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 level for the combination reaction of CH3AN· with the TEMPO radical. The theoretical activation energy for the coupling reaction from DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 calculations has been estimated to be 11.6 kcal mol?1, that is, only about 4.5 times smaller than ΔE for the disproportionation reaction obtained with the DFT UB3‐LYP/6‐311+G(3df, 2p)//(U)AM1 approach. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 914–927, 2006  相似文献   

8.
张金生  孟庆喜  李明 《化学学报》2005,63(8):686-692
用量子化学DFT, MP2, G3和G3MP2方法对FC(O)O自由基与NO2的反应机理进行了理论研究. 优化了反应势能面上各驻点的几何结构, 通过内禀反应坐标(IRC)计算和振动分析, 确认了反应中的过渡态, 并用过渡态理论(TST)计算了相关反应的速率常数.  相似文献   

9.
The reaction of nitrosodimethylamine, nitrosoazetidine, nitrosopyrrolidine, and nitrosopiperidine with the hydroxyl radical has been studied using electronic structure calculations in gas and aqueous phases. The rate constant was calculated using variational transition state theory. The reactions are initiated by H‐atom abstraction from the αC─H group of nitrosamines and leads to the formation of alkyl radical intermediate. In the subsequent reactions, the initially formed alkyl radical intermediate reacts with O2 forming a peroxy radical. The reaction of peroxy radical with other atmospheric oxidants, such as HO2 and NO radicals, is studied. The structures of the reactive species were optimized by using the density functional theory methods, such as M06‐2X, MPW1K, and BHandHLYP, and hybrid methods G3B3. The single‐point energy calculations were also performed at CCSD(T)/6‐311+G(d,p)// M062X/6‐311+G(d,p) level. The calculated thermodynamical parameters show that the reactions corresponding to the formation of intermediates and products are highly exothermic. We have calculated the rate constant for the initial H‐atom abstraction and subsequent favorable secondary reactions using canonical variational transition state theory over the temperature range of 150–400 K. The calculated rate constant for initial H‐atom abstraction reaction is ∼3 × 10−12 cm3 molecule−1 s−1 and is in agreement with the previous experimental results. The calculated thermochemical data and rate constants show that the reaction profile and kinetics of the reactions are less dependent on the number of methyl groups present in the nitrosoamines. Furthermore, it has been found that the atmospheric lifetime of nitrosamines is around 5 days in the normal atmospheric OH concentration.  相似文献   

10.
The mechanisms and dynamics studies of the OH radical and Cl atom with CF(3)CHClOCHF(2) and CF(3)CHFOCHF(2) have been carried out theoretically. The geometries and frequencies of all the stationary points are optimized at the B3LYP/6-311G(d,p) level, and the energy profiles are further refined by interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. For each reaction, two H-abstraction channels are found and four products (CF(3)CHFOCF(2), CF(3)CFOCHF(2), and CF(3)CHClOCF(2), CF(3)CClOCHF(2)) are produced during the above processes. The rate constants for the CF(3)CHClOCHF(2)/CF(3)CHFOCHF(2) + OH/Cl reactions are calculated by canonical variational transition-state theory (CVT) within 200-2000 K, and the small-curvature tunneling is included. The total rate constants calculated from the sum of the individual rate constants and the branching ratios are in good agreement with the experimental data. The Arrhenius expressions for the reactions are obtained. Our calculation shows that the substitution of Cl by F decreases the reactivity of CF(3)CHClOCHF(2) toward OH and Cl. In addition, the mechanisms of subsequent reactions of product radicals and OH radical are further investigated at the G3(MP2)//B3LYP/6-311G(d,p) level, and the main products are predicted in the this article.  相似文献   

11.
The kinetics and mechanisms of the self-reaction of allyl radicals and the cross-reaction between allyl and propargyl radicals were studied both experimentally and theoretically. The experiments were carried out over the temperature range 295-800 K and the pressure range 20-200 Torr (maintained by He or N(2)). The allyl and propargyl radicals were generated by the pulsed laser photolysis of respective precursors, 1,5-hexadiene and propargyl chloride, and were probed by using a cavity ring-down spectroscopy technique. The temperature-dependent absorption cross sections of the radicals were measured relative to that of the HCO radical. The rate constants have been determined to be k(C(3)H(5) + C(3)H(5)) = 1.40 × 10(-8)T(-0.933) exp(-225/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.088) and k(C(3)H(5) + C(3)H(3)) = 1.71 × 10(-7)T(-1.182) exp(-255/T) cm(3) molecule(-1) s(-1) (Δ log(10)k = ± 0.069) with 2σ uncertainty limits. The potential energy surfaces for both reactions were calculated with the CBS-QB3 and CASPT2 quantum chemical methods, and the product channels have been investigated by the steady-state master equation analyses based on the Rice-Ramsperger-Kassel-Marcus theory. The results indicated that the reaction between allyl and propargyl radicals produces five-membered ring compounds in combustion conditions, while the formations of the cyclic species are unlikely in the self-reaction of allyl radicals. The temperature- and pressure-dependent rate constant expressions for the important reaction pathways are presented for kinetic modeling.  相似文献   

12.
Polysulfone- and diphenyldisulfone-catalyzed alkene isomerizations are much faster for 2-alkyl-1-alkenes than for linear, terminal alkenes. The mechanism of these reactions has been investigated experimentally for the isomerization of methylidenecyclopentane into 1-methylcyclopentene, and theoretically [CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) calculations] for the reactions of propene and 2-methylpropene with a methanesulfonyl radical, MeSO2*. On heating, polysulfones and (PhSO2)2 equilibrate with sulfonyl radicals, RSO2*. The latter abstract allylic hydrogen atoms in one-step processes giving allylic radical/RSO2H pairs that recombine within the solvent cage producing the corresponding isomerized alkene and RSO2*. The sulfinic acid, RSO2H, can diffuse out from the solvent cage (H/D exchange with MeOD,D2O) and reduce an allyl radical. Calculations did not support other possible mechanisms such as hydrogen exchange between alkenes, electron transfer, or addition/elimination process. Kinetic deuterium isotopic effects measured for the (PhSO2)2-catalyzed isomerization of methylidenecyclopentane and deuterated analogues and calculated for the H abstraction from 2-methylpropene and deuterated analogues by CH3SO2* are consistent also with the one-step hydrogen transfer mechanism. The high chemoselectivity for this reaction is not governed by an exothermicity difference but by a difference in ionization energies of the alkenes. Calculations for CH3SO2* + propene and CH3SO2* + 2-methylpropene show a charge transfer of 0.34 and 0.38 electron, respectively, from the alkenes to the sulfonyl radical in the transition states of these hydrogen abstractions.  相似文献   

13.
The elementary reaction of the CH3 radical with NO2 was investigated by time-resolved FTIR spectroscopy and quantum chemical calculations. The CH3 radical was produced by laser photolysis of CH3Br or CH3I at 248 nm. Vibrationally excited products OH, HNO and CO2 were observed by the time-resolved spectroscopy for the first time. The formation of another product NO was also verified. According to these observations, the product channels leading to CH3O+NO, CH2NO+OH and HNO+H2CO were identified. The channel of CH3O+NO was the major one. The reaction mechanisms of the above channels were studied by quantum chemical calculations at CCSD(T)/6-311++G(df,p)//MP2/6-311G(d,p) level. The calculated results fit with the experimental observations well.  相似文献   

14.
This paper examines the unimolecular dissociation of propargyl (HCCCH2) radicals over a range of internal energies to probe the CH+HCCH and C+C2H3 bimolecular reactions from the radical intermediate to products. The propargyl radical was produced by 157 nm photolysis of propargyl chloride in crossed laser-molecular beam scattering experiments. The H-loss and H2 elimination channels of the nascent propargyl radicals were observed. Detection of stable propargyl radicals gave an experimental determination of 71.5 (+5-10) kcal/mol as the lowest barrier to dissociation of the radical. This barrier is significantly lower than predictions for the lowest barrier to the radical's dissociation and also lower than calculated overall reaction enthalpies. Products from both H2+HCCC and H+C3H2 channels were detected at energies lower than what has been theoretically predicted. An HCl elimination channel and a minor C-H fission channel were also observed in the photolysis of propargyl chloride.  相似文献   

15.
Retro-ene type [2π + 2π + 2σ] and [3,3]-sigmatropic shift reactions involving the substituent groups R in heteroatom-substituted cyanates and thiocyanates RX-YCN and the isomeric isocyanates and isothiocyanates of the type RX-NCY (X = CR(2), NR', O, or S; Y = O or S) have been investigated computationally at the B3LYP/6-311++G(d,p) level. Retro-ene reactions of alkyl derivatives of the title compounds afford alkenes, imines, carbonyl and thiocarbonyl compounds together with HNCO (HNCS) or HOCN (HSCN). [3,3]-Sigmatropic shifts (hetero-Cope rearrangements) of the corresponding allyl, propargyl, benzyl, and aryl derivatives causes allylic rearrangements, propargyl-allenyl rearrangement, conversion of benzyl cyanates to o-isocyanatotoluenes, and conversion of N-cyanatoarylamines to o-isocyanatoanilines, etc. The corresponding rearrangements of allyl thiocyanates, arylamino thiocyanates and isothiocyanates, and arylsulfenyl thiocyanates and isothiocyanates are also described.  相似文献   

16.
The reaction mechanism of carbonyl oxide with hydroxyl radical was investigated by using CASSCF, B3LYP, QCISD, CASPT2, and CCSD(T) theoretical approaches with the 6-311+G(d,p), 6-311+G(2df, 2p), and aug-cc-pVTZ basis sets. This reaction involves the formation of H2CO + HO2 radical in a process that is computed to be exothermic by 57 kcal/mol. However, the reaction mechanism is very complex and begins with the formation of a pre-reactive hydrogen-bonded complex and follows by the addition of HO radical to the carbon atom of H2COO, forming the intermediate peroxy-radical H2C(OO)OH before producing formaldehyde and hydroperoxy radical. Our calculations predict that both the pre-reactive hydrogen-bonded complex and the transition state of the addition process lie energetically below the enthalpy of the separate reactants (DeltaH(298K) = -6.1 and -2.5 kcal/mol, respectively) and the formation of the H2C(OO)OH adduct is exothermic by about 74 kcal/mol. Beyond this addition process, further reaction mechanisms have also been investigated, which involve the abstraction of a hydrogen of carbonyl oxide by HO radical, but the computed activation barriers suggest that they will not contribute to the gas-phase reaction of H2COO + HO.  相似文献   

17.
For the (aut)oxidation of toluene to benzyl hydroperoxide, benzyl alcohol, benzaldehyde, and benzoic acid, the thermochemical profiles for various radical‐generating reactions have been compared. A key intermediate in all of these reactions is benzyl hydroperoxide, the heat of formation of which has been estimated by using results from CBS‐QB3, G4, and G3B3 calculations. Homolytic O?O bond cleavage in this hydroperoxide is strongly endothermic and thus unlikely to contribute significantly to initiation processes. In terms of reaction enthalpies the most favorable initiation process involves bimolecular reaction of benzyl hydroperoxide to yield hydroxy and benzyloxy radicals along with water and benzaldehyde. The reaction enthalpy and free energy of this process is significantly more favorable than those for the unimolecular dissociation of known radical initiators, such as dibenzoylperoxide or dibenzylhyponitrite.  相似文献   

18.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

19.
Gas-phase kinetics and mechanisms of SiH(3) reactions with SiH(4), Si(2)H(6), Si(3)H(8), and Si(4)H(10), processes of relevance to a-Si thin-film deposition, have been investigated by ab initio molecular orbital and transition-state theory (TST) calculations. Geometric parameters of all the species involved in the title reactions were optimized by density functional theory at the B3LYP and BH&HLYP levels with the 6-311++G(3df,2p) basis set. The potential energy surface of each reaction was refined at the CCSD(T)/6-311++G(3df,2p) level of theory. The results show that the most favorable low energy pathways in the SiH(3) reactions with these silanes occur by H abstraction, leading to the formation of SiH(4) + Si(x)H(2x+1) (silanyl) radicals. For both Si(3)H(8) and n-Si(4)H(10) reactions, the lowest energy barrier channels take place by secondary Si-H abstraction, yielding SiH(4) + s-Si(3)H(7) and SiH(4) + s-Si(4)H(9), respectively. In the i-Si(4)H(10) reaction, tertiary Si-H abstraction has the lowest barrier producing SiH(4) + t-Si(4)H(9). In addition, direct SiH(3)-for-X substitution reactions forming Si(2)H(6) + X (X = H or silanyls) can also occur, but with significantly higher reaction barriers. A comparison of the SiH(3) reactions with the analogous CH(3) reactions with alkanes has been made. The rate constants for low-energy product channels have been calculated for the temperature range 300-2500 K by TST with Eckart tunneling corrections. These results, together with predicted heats of formation of various silanyl radicals and Si(4)H(10) isomers, have been tabulated for modeling of a-Si:H film growth by chemical vapor deposition.  相似文献   

20.
Master equation calculations were carried out to simulate the production of hydroxyl free radicals initiated by the reaction of acetyl free radicals (CH3(C=O).) with molecular oxygen. In particular, the competition between the unimolecular reactions and bimolecular reactions of vibrationally excited intermediates was modeled by using a single master equation. The vibrationally excited intermediates (isomers of acetylperoxyl radicals) result from the initial reaction of acetyl free radical with O2. The bimolecular reactions were modeled using a novel pseudo-first-order microcanonical rate constant approach. Stationary points on the multi-well, multi-channel potential energy surface (PES) were calculated at the DFT(B3LYP)/6-311G(2df,p) level of theory. Some additional calculations were carried out at the CASPT2(7,5)/6-31G(d) level of theory to investigate barrierless reactions and other features of the PES. The master equation simulations are in excellent agreement with the experimental OH yields measured in N2 or He buffer gas near 300 K, but they do not explain a recent report that the OH yields are independent of pressure in nearly pure O2 buffer gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号