首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple and efficient column chromatographic method has been developed for the separation of Ce(III) from U(VI) and Ni(II)/Zn(II)/Cd(II)/Co(II)/Ba(II) etc. using poly[dibenzo-18-crown-6] as stationary phase and hippuric acid as a counter ion. HCl and H2SO4 were most efficient eluting agents for Ce(III). The capacity of crown polymer for Ce(III) was found to be 0.285 ± 0.01 mmol/g. The tolerance limits of various cations and anions for Ce(III) were determined. Ce(III) was quantitatively separated from U(VI) and Ni(II)/Zn(II)/Cd(II)/Co(II)/Ba(II) in binary as well as multicomponent mixtures. The good separation yields were obtained and had good reproducibility (±2 %). The method incorporated the determination of Ce(III) in real sample. The method was simple, rapid and selective.  相似文献   

2.
A selective and effective chromatographic separation method for thorium(IV) has been developed by using poly [dibenzo-18-crown-6] as stationary phase. The separations are carried out from glycine medium. The sorption of thorium(IV) was quantitative from 1 × 10?2 to 1 × 10?4 M glycine. The elution of thorium(IV) was quantitative with 2.0–8.0 M HCl, 4.0–7.0 M HBr, 1.0–2.0 M HClO4 and 5.0 M H2SO4. The capacity of poly [dibenzo-18-crown-6] for thorium(IV) was found to be 0.215 ± 0.01 mmol/g of crown polymer. The effect of concentration of glycine, metal ion, foreign ion and eluents has been studied. Thorium(IV) was separated from a number of cations in ternary as well as in multicomponent mixtures. The applicability of the proposed method was checked for the determination of thorium(IV) in real as well as geological sample. The method is simple, rapid, and selective with good reproducibility (approximately ±2 %).  相似文献   

3.
A selective and effective column chromatographic separation method has been developed for uranium(VI) using poly[dibenzo-18-crown-6]. The separation was carried out in L-valine medium. The adsorption of uranium(VI) was quantitative from 1.0 × 10−4 to 1 × 10−1 M of L-valine. Amongst various eluents 2.0–8.0 M hydrochloric acid, 1.0–4.0 M sulfuric acid, 1.0–5.0 M perchloric acid, 6.0–8.0 M hydrobromic acid and 5.0–6.0 M acetic acid were found to be efficient eluents for uranium(Vl). The capacity of poly[dibenzo-18-crown-6] for uranium(VI) was 0.25 ± 0.01 mmol/g of crown polymer. Uranium(VI) was separated from number of cations and anions in binary mixtures in which most of the cations and anions show a very high tolerance limit. The selective separation of uranium(VI) was carried out from multicomponent mixtures. The method was extended to determination of uranium(VI) in geological samples. The method is simple, rapid and selective with good reproducibility (approximately ∼2%).  相似文献   

4.
A selective and very effective separation method for uranium(VI) has been developed by using poly(dibenzo-18-crown-6) and column chromatography. The separations are carried out from ascorbic acid medium. The adsorption of uranium(VI) was quantitative from 0.00002 to 0.006 M ascorbic acid. The elution of uranium(VI) was quantitative with 2.0-8.0 M HCl and 2.0-5.0 M H2SO4. The capacity of poly(dibenzo-18-crown-6) for uranium(VI) was found to be 0.92 +/- 0.01 mmol g(-1) of crown polymer. Uranium(VI) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of uranium in geological samples. It is possible to separate and determine 5 ppm of uranium(VI) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately +/- 2%).  相似文献   

5.
A simple and efficient column chromatographic method has been developed for the sequential separation of U(VI), Th(IV) and Ce(III) using poly[dibenzo-18-crown-6] as stationary phase and l-arginine as a counter ion. The different elution patterns with various eluting agents were observed for individual element. The capacity of poly[dibenzo-18-crown-6] for U(VI), Th(IV) and for Ce(III) was found to be 0.96, 0.86 and 1.49 (±0.01) mmol/g of crown polymer, respectively. The method is efficient to separate the elements in multicomponent mixtures and has good recovery. The method is extended to determine the U(VI), Th(IV) and Ce(III) from monazite sand. The method is simple, rapid and selective having good reproducibility (~±2%).  相似文献   

6.
Mohite BS  Patil JM  Zambare DN 《Talanta》1993,40(10):1511-1518
A very simple column chromatographic separation method has been developed for molybdenum (VI) using poly-(dibenzo-18-crown-6). The separations are carried out from hydrochloric acid medium. The adsorption of molybdenum (VI) on a poly-(DB-18-C-6) was quantitative from 2.5 to 10.0M HCl. Amongst the various eluents tested, 0.5M ammonium hydroxide was found to be an efficient eluent. Molybdenum (VI) was separated from a large number of elements in binary form, as well as from multicomponent mixtures. The method was applied for the analysis of molybdenum from various alloy samples. The method is very simple, rapid, selective and reproducible. The reproducibility of the procedure is +/-2%.  相似文献   

7.
A simple column chromatographic method has been developed for the separation of thorium from associated elements using poly-(dibenzo-18-crown-6). The separations are carried out from sodium nitrate medium. The adsorption of thorium was quantitative from 0.1-0.5M sodium nitrate. Amongst the various eluents tested, 1.0-8.0M HCl, HBr, H2SO4 and 3.0-8.0M HClO4 were found to be particularly efficient for e elution of thorium. The capacity of poly-(dibenzo-18-crown-6) for thorium was found to be 1.034 mmole/g of crown polymer. Thorium was arated from number of elements in binary mixtures in which most of the elements showed a very high tolerance limit. It was possible to separate tium from a number of elements in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand and ga: artles. The method is very simple, rapid, selective and has good reproducibility (approximately±2%).  相似文献   

8.
DB-18-C6 was used for the extractive separation analysis of molybdenum(VI) from a range of other elements. Molybdenum(VI) was quantitatively extracted from 8M hydrochloric acid with 0.01M DB-18-C6 in nitrobenzene. It was stripped from the organic phase with 2M nitric acid and determined spectrophotometrically with Tiron at 390 nm. Molybdenum was separated from a large number of elements in binary mixtures, the tolerance limit for most elements being very high. Selective extraction of molybdenum permits its separation from barium, thorium, cesium, rubidium, strontium, lanthanum, chromium(III) and cerium(III). The method was extended for the analysis of molybdenum in a soil sample.  相似文献   

9.
A simple separation method has been developed for thorium(IV) using poly-(dibenzo-18-crown-6) and column chromatography. The separation was carried out from ascorbic acid medium. The adsorption of thorium(IV) was quantitative from 0.001-0.01M ascorbic acid. The elution of thorium(IV) was quantitative with 4.0-8.0M HCl, 3.0-6.0M HClO4, 4.0-8.0M H2SO4 and 1.0-8.0M HBr. The capacity of poly-(dibenzo-18-crown-6) for thorium(IV) was found to be 1.379±0.01 m.mol/g of crown polymer. Thorium(IV) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand. It is possible to separate and determine 5 ppm of thorium(IV) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately ±2%).  相似文献   

10.
The extraction of rare-earth elements (REE) by alkylated crown ethers (dibenzo-and dicyclohexano-18-crown 6; DB18C6 and DCH18C6) from acid solutions in the chloroform-water system is studied. The extraction of the REE with DCH18C6 and its alkylated derivatives in the presence of trichloroacetic acid (TCA) is far more efficient than the extraction with DB18C6 and its alkylated derivatives or when nitric or acetic acid is used instead of TCA. The distribution coefficients for the cerium metals are far higher than for the yttrium metals. The metal: crown ether ratio in the extracted complex in all cases is 1:1.  相似文献   

11.
A new compound, aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(perchlorato-O)potassium perchlorate ([K(DB18C6)(H2O)]+ · [K(ClO4)(DB18C6)] · ClO 4 ? ; compound I) is synthesized and studied by X-ray crystallography. The crystals are triclinic: a = 9.050 Å, b = 9.848 Å, c = 26.484 Å, α = 82.87°, β = 84.16°, γ = 77.93°, Z = 2, space group P $\bar 1$ . The structure is solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.058 for 5960 independent reflections (CAD4 diffractometer, λMoK α radiation). A complex cation [K(DB18C6)(H2O)]+ and a complex molecule [K(ClO4)(DB18C6)] are of the host-guest type; they are linked into a dimer through two K+ → π(C) bonds formed by one of the two K+ cations with two C atoms of the benzene ring of the DB18C6 ligand from the adjacent complex. Both DB18C6 ligands in I have a butterfly conformation with approximate symmetry C 2v .  相似文献   

12.
Liquid-liquid extraction of uranium (VI) from hydrobromic acid solutions with dibenzo-24-crown-8 in nitrobenzene have been investigated. Uranium(VI) was quantitatively extracted from 6.0–8.0M hydrobromic acid with 0.001–0.01M dibenzo-24-crown-8 and was quantitatively stripped from the organic phase with 0.1–1.0M hydrochloric acid, 0.5–10M nitric acid, 2–10M perchloric acid, 3.0–10M sulfuric acid or 3.0–10M acetic acid. It was possible to separate uranium(VI) from a number of elements in binary mixtures. Most of the elements showed very high tolerance limit Uranium(VI) was also separated from a number of associated elements in multicomponent mixtures. The method is very simple, selective, rapid and highly reproducible (approximately±2%) and was applied to the analysis of uranium in geological samples.  相似文献   

13.
Complexes of UO2 2+, Ce3+ and Nd3+ (M) with acetohydroxamic acid (AHA or L) in an aqueous solution have been investigated by the pH-spectral titration method at 25 °C in an aqueous medium of 1.0 M NaClO4 ionic strength. Cerium(III) and neodymium(III) form [ML]2+, [ML2]+, [ML3] complexes with acetohydroxamic acid, while in case of UO2 2+ form [UO2L]+, [UO2L2] complexes with acetohydroxamic acid. Data processing with SQUAD program calculates the best values for the stability constants from pH-spectrophotometric titration data. The protonation constant obtained was pK1 = 9.15 ± 0.04 at 25 °C. The stability constants for acetohydroxamic acid with UO2 2+, Ce3+ and Nd3+ were β1 = 7.22 ± 0.011, β2 = 14.89 ± 0.018 for UO2 2+ and β1 = 5.05 ± 0.062, β2 = 10.60 ± 0.076, β3 = 16.23 ± 0.088 for Ce3+ and β1 = 5.90 ± 0.028, β2 = 12.22 ± 0.038, β3 = 18.58 ± 0.042 for Nd3+, respectively.  相似文献   

14.
Solvent extraction of uranium(VI) from aqueous solutions of ammoniumthiocyanate has been investigated in the presence of dibenzo-18-crown-6. Uranium(VI)was quantitatively extracted from 1.0M ammonium thiocyanate using 0.01M dibenzo-18-crown-6in nitrobenzene. Back extraction of U(VI) was quantitative with various strippingagents. Separation of U(VI) from other elements was achieved from binary aswell as multicomponent mixtures. Uranium was determined in monazite sand andsyenite rock samples. The method is very simple, rapid and highly reproducible(approximately ±2%).  相似文献   

15.
周雅仙  张宪新 《化学学报》1988,46(5):496-499
本文用斜率法、饱和法以及通过与萃取合物相对应的冠醚配合物晶体的制备及其性质研究, 探讨了In^3^+的萃取机理, 测定并计算了表观萃取平衡常数, 将此萃取体系应用于铟和某些体系应用于铟和某些金属离子的萃取分离, 亦获得较好的结果.  相似文献   

16.
A new complex [Cs(Db18C6)2]+[FeCl4]? was prepared and studied by X-ray diffraction (orthorhombic, space groupP21212,a = 22.934 Å,b= 24.024 Å,c= 16.665 Å,Z= 8; direct method, anisotropic full-matrix least-squares refinement,R= 0.087 for all 8800 independent reflections; CAD4 automated diffractometer, λMoK α. Two independent [FeCl4]? anions have a slightly distorted tetrahedral structure. Two independent host-guest type complex cations [Cs(Db18C6)2]+ have a sandwich structure. The Cs+ cation is located between two Db18C6 crown ligands below and above the centers of their 18-membered macrocycles and is coordinated by all 12 O atoms. The coordination polyhedron of Cs+ (C.N. 12) is a distorted hexagonal antiprism rotated toward a hexagonal prism.  相似文献   

17.
Uranium(VI) was quantitatively extracted with 0.01M DB-24-crown-8 in nitrobenzene from 6 to 10M hydrochloric acid. From the organic phase uranium was stripped with 2M nitric acid and determined spectrophotometrically with PAR at 530 nm. Uranium(VI) was separated from a large number of elements in binary mixtures as well as from multicomponent mixtures. The method was extended to the analysis of uranium in geological samples and animal bone.  相似文献   

18.
Summary CuII can be extracted from aqueous KSCN solutions using 2,3,11,12-dibenzo-1,7,10,13,16-hexaoxacyclooctadiene (di-benzo-18-crown-6) in CHCl3. Raman and i.r. spectroscopies establish that the species present in the organic phase after extraction corresponds to [Cu2OH(SCN)5]-[dibenzo-18-crown-6-K +]2, where the CuII thiocyanide complex and the K+ crown complex are ionically associated.  相似文献   

19.
New mixed complex compound aqua(dibenzo-18-crown-6)potassium (dibenzo-18-crown-6)(tetrachlorocuprato(II)-Cl)potassium, [K(CuCl4)(Db18C6)]? · [K(Db18C6)(H2O)]+, is synthesized and its crystal structure is studied by the method of x-ray structural analysis. The structure includes two independent complex ions, both of guest-host type: two cations K+ are located in the respective cavities of the Db18C6 crown-ligand (one in each) and each is coordinated by all its six O atoms and one Cl atom of the anion-ligand [CuCl4]2? or O atom of the ligand water molecule. Coordination of these two K+ cations is completed to hexagonal pyramidal one by formation by each of unusually weak coordination bond K+π(\(C\dddot - C\)) with two C atoms of respective benzene ring in the neighboring Db18C6 ligand. In this crystal structure the complex anions and cations form dual infinite chains via these coordination bonds and interionic O-H?Cl hydrogen bonds.  相似文献   

20.
A method has been developed for the introduction of benzimidazole substituents into the dibenzo-18-crown-6 molecule by condensation of its 4′,4″(5″)-diacetyl derivative with ortho-phenylenediamine. Increasing the length of the hydrocarbon chain of the acyl substituent or replacing Ac by CSNH2 led to a decrease in the yield of the desired product. No product was formed when Ac was replaced by COOH or CN. __________ Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, 1388–1390, September, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号