首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The problem of charged polymer chains (polyelectrolytes) as they adsorb on a planar surface is addressed theoretically. We review the basic mechanisms and theory underlying polyelectrolyte adsorption on a single surface in two situations: adsorption of a single charged chain, and adsorption from a bulk solution in θ solvent conditions. The behavior of flexible and semi-rigid chains is discussed separately and is expressed as function of the polymer and surface charges, ionic strength of the solution and polymer bulk concentration. We mainly review mean-field results and briefly comment about fluctuation effects. The phenomenon of polyelectrolyte adsorption on a planar surface as presented here is of relevance to the stabilization of colloidal suspensions. In this respect we also mention calculations of the inter-plate force between two planar surfaces in presence of polyelectrolyte. Finally, we comment on the problem of charge overcompensation and its implication to multi-layers formation of alternating positive and negative polyelectrolytes on planar surfaces and colloidal particles.  相似文献   

2.
When semiconductor colloidal CdS nanoparticles and nonylphenol are mixed together in dimethyl sulfoxide at room temperature, a self-assembling process is induced. In the course, the size tunable properties of CdS nanoparticles are amplified. A blue shift in the emission spectrum and a strong photoluminescence enhancement are observed without significant change in the absorption features of the colloidal nanoparticles. These results are attributed to the adsorption of nonylphenol onto the nanoparticles surface and to the association process of the surfactant molecules. The surfactant adsorption process provides a nanoparticle surface passivation and induces an associative phase that enlarges the photoluminescence stability. This strategy opens the possibility to improve simultaneously physicochemical and photoluminescence properties of nanocrystals in solution as well as to control their deposition on two-dimensional surfaces.  相似文献   

3.
Molecular interaction with metal surfaces raises fundamental questions regarding their binding tendency, their dispersion on the surface, as well as their conformation which may change their biological properties; addressing these questions, and being able to tune protein interactions, is of primary importance for the control of biointerfaces. In this study, one tripeptide, GSH (glu-cys-gly), was used to condition gold surfaces and thus influence the adsorption of bovine serum albumin (BSA). Depending on the pH value of the GSH solution, cationic, zwitterionic or anionic forms of the tripeptide could be stabilised on the surface, before interacting with BSA solutions. The amount of proteins was observed to depend both on the chemical state of the adsorbed underlying peptide and on the solvent of the protein solution, indicating an important role of electrostatic interactions upon protein adsorption. Moreover, atomic force microscopy (AFM), and synchrotron IR microscopy revealed a heterogeneous distribution of proteins on the GSH layer.  相似文献   

4.
Poksinski M  Arwin H 《Optics letters》2007,32(10):1308-1310
Total internal reflection ellipsometry (TIRE) is used to study adsorption of human serum albumin and fibrinogen on thin gold films. TIRE shows very high sensitivity for protein monolayers adsorbed on metal surfaces when surface plasmon resonance effects are utilized. The measured data, expressed in ellipsometric angles psi and D are of several orders of magnitude larger in comparison with those from similar experiments performed with traditional ellipsometry. TIRE in spectral mode opens a new path for precise studies of organic layers adsorbed on metal surfaces, with a potential for resolving the adsorbed layer microstructure.  相似文献   

5.
谢剑钧  张涛  路文昌 《物理学报》1993,42(11):1815-1821
应用格林函数方法在紧束缚近似下研究了氢在担载金属表面的吸附性质。采用自洽的Anderson-Newns吸附模型,对氢在Pt/ZnO,Cu/ZnO和Ni/ZnO三种担载式复合体系表面的吸附能△E、吸附态能级Ead作了计算,并讨论了金属簿层在ZnO衬底上的沉积厚度及金属-衬底相互作用对氢在该类复合体系表面的吸附性质的影响。计算表明,金属-衬底相互作用越强,氢在Pt(Cu,Ni)/ZnO体系表面的吸附能及电荷转移量越小。金属-衬底相互作用抑制了氢在金属表面的吸附。衬底对金属表面吸附性质的影 关键词:  相似文献   

6.
We discuss some of the most relevant bonding scenarios for the adsorption of organic molecules on solid surfaces from the perspective of first-principles calculations. The adsorption of uracil and phenanthrenequinone on Si(001) and the adsorption of adenine on Cu(110) and graphite(0001) surfaces serve as prototypical examples to highlight relevant molecule–substrate interactions and their consequences for the properties of the adsystem. Covalent bonds formed during organic reactions with semiconductor surfaces significantly modify the structural and electronic properties of both the adsorbed molecules and the substrate. Organic molecule adsorption on metals may be driven by mutual polarisation that leads to substantial charge transfer and rehybridisation, despite small adsorption energies. Subtle effects related to the lowering of the kinetic energy of the valence electrons as well as dispersion forces, finally, govern the interaction between the organic molecules and chemically inert substrates such as graphite. PACS 68.35.Md; 68.43.Bc; 68.43.-h; 73.20.-r; 82.39.Pj  相似文献   

7.
This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.  相似文献   

8.
For affinity purification of drug target protein we have developed magnetic carriers, narrow in size distribution (184±9 nm), which exhibit minimal non-specific binding of unwanted proteins. The carriers were highly dispersed in aqueous solutions and highly resistant to organic solvents, which enabled immobilization of various hydrophobic chemicals as probes on the carrier surfaces. Utilizing the carriers we have automated the process of separation and purification of the target proteins that had been done by manual operation previously.  相似文献   

9.
The effect of oxygenation on the electronic properties of semiconducting carbon nanotubes is studied from first principles. The O2 is found to bind to a single-walled nanotube with an adsorption energy of about 0.25 eV and to dope semiconducting nanotubes with hole carriers. Weak hybridization between carbon and oxygen is predicted for the valence-band edge states. The calculated density of states shows that weak coupling leads to conducting states near the band gap. The oxygen-induced gap closing for large-diameter semiconducting tubes is discussed as well. The influence of oxygen on the magnetic property is also addressed through a spin-polarized calculation and compared to experiment.  相似文献   

10.
Rotational cooling and collisional alignment of ethylene molecules is induced by seeding effects in supersonic expansions with lighter gas carriers such as He and Ne. The dependencies of the degree of alignment on the rotational state, on the final speed of the molecules and on the diffusion angular cone have been characterized by coupling two different experimental methodologies. An application to surface scattering is then demonstrated by measuring stereo-dynamical effect in the adsorption on metallic surfaces.  相似文献   

11.
《Comptes Rendus Physique》2013,14(1):121-130
We review the recent literature on the use of optical spectroscopy of semiconductor quantum dots in high magnetic fields. We address both self-assembled epitaxial dots and colloidal nanocrystal quantum dots, each of which has its own characteristic optical response. Combining simple theoretical models for quantum confinement with the effect of high magnetic fields we describe the basic optically allowed transitions expected for epitaxial and colloidal quantum dots. Within these models we discuss the effects of quantum confinement and orbital and spin Zeeman effects on the optical spectra, illustrated by experimental examples. Finally, effects of electron–electron and exchange interactions are addressed.  相似文献   

12.
The adsorption of water on porous silica surfaces at 300 K, has been qualitatively reproduced by Grand Canonical Monte Carlo simulations (GCMC) without any adjustment of adsorbate/substrate potential parameter. The simulated adsorption isotherm and isosteric differential enthalpy of adsorption compare well to experimental data for Vycor, showing the ability of the model in describing hydrophilic properties of silica surfaces. The analysis of fluid structure in the mesoporous glass gives detailed insights into confinement and disorder effects on water adsorbed on the hydrophilic surface of a porous glass. It is shown that hydrophilic properties are not simply related to surface hydroxyl density but are also related to local structure of the silica surface.  相似文献   

13.
采用分子动力学方法研究了三种水溶剂环境(即介电常数模型、部分溶剂化模型和全溶剂化模型)中牛胰蛋白酶抑制剂(BPTI)在金表面上的吸附效应. 结果表明BPTI在介电常数模型中会发生快而强的吸附作用并导致蛋白质结构发生大的结构偏差、明显的沿金表面的平铺展开、二级结构的快速消失、更多的原子出现在与金表面强相互作用的区域. 与介电常数模型相比,部分溶剂化模型中蛋白质与金表面间的显含水分子削弱了金的吸附作用,使得吸附速度和结构的变化程度减弱,但金吸附导致的蛋白质紧密水化层的损失仍然使得它的结构发生明显的变化. 蛋白质在全溶剂化的体系中吸附速度和程度是最慢最弱的,结构变化最小并能发生一定程度的旋转来寻找合适的吸附  相似文献   

14.
In mixtures of nanoparticles of various sizes or compositions, monitoring protein partitioning on their surfaces provides important information about particle–protein interactions during competitive adsorption. Utilizing the size‐resolving capability of differential centrifugal sedimentation, the adsorption of bovine serum albumin on multisize gold nanoparticles with diameters ranging from 20 to 100 nm or gold, silver, and silica nanoparticles with similar diameter can be concurrently observed. This method can be used to gain insight into nanoparticle–protein interactions based on analyses of curvature and relative abundance.  相似文献   

15.
Nanoparticle (NP) surfaces are modified immediately by the adsorption of proteins when injected into human blood, leading to the formation of a protein corona. The protein‐coated NPs may be recognized by living cells. Furthermore, the adsorption of serum proteins is a continuous competitive dynamic process that is the key to exploring the bioapplication and biosafety of NPs. In this study, the competitive dynamic adsorption of some serum proteins on gold nanoparticles (AuNPs) is investigated by fluorescence emission, dynamic light scattering, and sodium dodecyl sulfate‐polyacrylamide gel electrophoresis. Serum proteins with different AuNPs binding affinities are used to address the competitive dynamic process of protein‐AuNP interactions in vitro. The results show that more abundant serum proteins, such as human serum albumin, adsorb on AuNPs first, and then the higher binding affinity and lower concentration serum proteins, such as fibrinogen (FIB), replace the abundant and lower binding affinity serum proteins. However, the lower binding affinity serum proteins, such as hemoglobin, do not replace the higher binding affinity proteins from the protein‐AuNP conjugates. During the dynamic exchange process, the larger the binding affinities difference between two proteins, the faster the exchange rate. This dynamic exchange process usually takes longer in inner protein‐AuNP conjugates (hard corona) than the external surface of protein‐AuNP conjugates (soft corona).  相似文献   

16.
Surface‐enhanced Raman scattering (SERS) is an extremely powerful tool for the analysis of the composition of bimetallic nanoparticle (BNP) surfaces because of the different adsorption schemes adopted by several molecules on different metals, such as Au and Ag. The preparation of BNPs normally implies a change in the plasmonic properties of the core metal. However, for technological applications it could be interesting to synthesize core–shell structures preserving these original plasmonic properties. In this work, we present a facile method for coating colloidal gold nanoparticles (NPs) in solution with a very thin shell of silver. The resulting bimetallic Au@Ag system maintains the optical properties of gold but shows the chemical surface affinity of silver. The effectiveness of the coating method, as well as the progressive silver enrichment of the outermost part of the Au NPs, has been monitored through the SERS spectra of several species (chloride, luteolin, thiophenol and lucigenin), which show different behaviors on gold and silver surfaces. A growth mechanism of the Ag shell is proposed on the basis of the spectroscopic and microscopic data consisting in the formation and deposit of Ag clusters on the Au NP surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Xu D  Zhou NL  Shen J 《光谱学与光谱分析》2010,30(12):3281-3284
综述了生物医用材料和血液接触后,不同血浆蛋白组分在材料表面的竞争吸附行为;材料表面特性对血浆蛋白吸附有重要影响,具有表面自由能小、亲水性强、带有负电荷和存在有微相分离结构的材料均能降低血浆纤维蛋白原的吸附,表现出良好的抗凝血性能;总结了红外、圆二色谱、核磁、荧光等光谱学手段在蛋白吸附表征方面的研究进展,XPS、Raman、AFM等现代仪器也崭露头角,其中,石英晶体微天平对吸附机理的研究显得更直观;探讨了指导抗凝血生物医用材料的设计思路,指出蛋白吸附的深入研究有助于提高生物材料设计的水平。  相似文献   

18.
An in-depth study of a novel functionalization of carbon nanotubes for their application as protein and DNA carriers is presented. First, the optimum conditions for the dispersion of single-walled carbon nanotubes (SWCNTs) with amphiphilic polypeptides were obtained, and the SWCNT–polypeptide complexes were characterized by different techniques (UV–Vis-NIR, CD, and AFM). Based on the properties of the SWCNT–polypeptide complexes, a model that characterizes the adsorption of natural proteins onto SWCNT was described for the first time. This model predicts the adsorption of natural proteins on SWCNTs based on the protein structure and composition, and therefore, allows the design of methods for the preparation of SWCNT–protein complexes. Besides, the use of cationic-designed amphiphilic polypeptides to disperse SWCNTs is applied for subsequent and efficient binding of DNA to carbon nanotubes by a bilayer approach. Therefore, in this article, we develop procedures for the use of SWCNTs as protein and DNA carriers. The systems were delivered into cells showing that the efficiency of delivery is affected by the charge of the complexes, which has important implications in the use of SWCNT as platforms for protein and DNA binding and subsequent use as delivery systems.  相似文献   

19.
张允什  林荫浓  汪根时 《物理》2000,29(2):86-90
镍-金属氢化物(Ni-MH)电池是贮氢全金研制成功之后的产物。新的高性能贮氢合金的研制是提高Ni-MH电池性能的关键之一。文章对贮氢合金的贮氢机制,如贮氢原理,从表面吸附、渗透、体内扩散、相变及其可逆过程,不仅从化学而且从物理学方面作了说明。同时也讨论了贮氢材料的宏观、微观结构对性能的影响,并提出了一个些值得进一步探讨的问题。  相似文献   

20.
基于密度泛函理论系统研究了碳化钛(TiC)和氮化钛(TiN)非极性(001)表面吸附气体分子和原子的性能。鉴于这些材料拥有不同的电子结构特征,发现受电子的CO分子或未饱和的O和H原子在TiC(001)和TiN(001)表面吸附于不同的活性位点,而供电子的NH3和H2O气体分子或完全饱和的O2和H2分子仅倾向与两个表面的金属原子位点结合。这些吸附特性可能与此类材料表面的电子结构有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号