首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper we consider a class of nonlinear elliptic problems of the type
$ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right. $ \left\{ \begin{gathered} - div(a(x,\nabla u)) - div(\Phi (x,u)) = fin\Omega \hfill \\ u = 0on\partial \Omega , \hfill \\ \end{gathered} \right.   相似文献   

2.
More work is done to study the explicit, weak and strong implicit difference solution for the first boundary problem of quasilinear parabolic system: $$\begin{gathered} u_t = ( - 1)^{M + 1} A(x,t,u, \cdots ,u_x M - 1)u_x 2M + f(x,t,u, \cdots u_x 2M - 1), \hfill \\ (x,t) \in Q_T = \left| {0< x< l,0< t \leqslant T} \right|, \hfill \\ u_x ^k (0,t) = u_x ^k (l,t) = 0 (k = 0,1, \cdots ,M - 1),0< t \leqslant T, \hfill \\ u(x,0) = \varphi (x),0 \leqslant x \leqslant l, \hfill \\ \end{gathered} $$ whereu, ?, andf arem-dimensional vector valued functions, A is anm×m positively definite matrix, and $u_t = \frac{{\partial u}}{{\partial t}},u_x ^k = \frac{{\partial ^k u}}{{\partial x^k }}$ . For this problem, the convergence of iteration for the general difference schemes is proved.  相似文献   

3.
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains
. Here, ΩɛS ɛ is a periodically perforated domain. We obtain the homogenized equation and corrector results. The homogenization of the equations on a fixed domain was studied by the authors [15]. The homogenization for a fixed domain and has been done by Jian [11].  相似文献   

4.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

5.
6.
Let Ω ? ? n , n ? 2, be a bounded connected domain of the class C 1,θ for some θ ∈ (0, 1]. Applying the generalized Moser-Trudinger inequality without boundary condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the existence and multiplicity of nontrivial weak solutions to the problem $$\begin{gathered} u \in W^1 L^\Phi \left( \Omega \right), - div\left( {\Phi '\left( {\left| {\nabla u} \right|} \right)\frac{{\nabla u}} {{\left| {\nabla u} \right|}}} \right) + V\left( x \right)\Phi '\left( {\left| u \right|} \right)\frac{u} {{\left| u \right|}} = f\left( {x,u} \right) + \mu h\left( x \right) in \Omega , \hfill \\ \frac{{\partial u}} {{\partial n}} = 0 on \partial \Omega , \hfill \\ \end{gathered}$$ where Φ is a Young function such that the space W 1 L Φ(Ω) is embedded into exponential or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical growth, V (x) is a continuous potential, h ∈ (L Φ(Ω))* is a nontrivial continuous function, µ ? 0 is a small parameter and n denotes the outward unit normal to ?Ω.  相似文献   

7.
This paper is primarily concerned with the large time behaviour of solutions of the initial boundary value problem $$\begin{gathered} u_t = \Delta \phi (u) - \varphi (x,u)in\Omega \times (0,\infty ) \hfill \\ - \frac{{\partial \phi (u)}}{{\partial \eta }} \in \beta (u)on\partial \Omega \times (0,\infty ) \hfill \\ u(x,0) = u_0 (x)in\Omega . \hfill \\ \end{gathered} $$ Problems of this sort arise in a number of areas of science; for instance, in models for gas or fluid flows in porous media and for the spread of certain biological populations.  相似文献   

8.
The initial boundary value problem
$ {*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ $ \begin{array}{*{20}{c}} {\rho {u_{tt}} - {{\left( {\Gamma {u_x}} \right)}_x} + A{u_x} + Bu = 0,} \hfill & {x > 0,\quad 0 < t < T,} \hfill \\ {u\left| {_{t = 0}} \right. = {u_t}\left| {_{t = 0}} \right. = 0,} \hfill & {x \geq 0,} \hfill \\ {u\left| {_{x = 0}} \right. = f,} \hfill & {0 \leq t \leq T,} \hfill \\ \end{array}  相似文献   

9.
In this paper, we establish some error bounds for the continuous piecewise linear finite element approximation of the following problem: Let Ω be an open set in ? d , withd=1 or 2. GivenT>0,p ∈ (1, ∞),f andu 0; finduK, whereK is a closed convex subset of the Sobolev spaceW 0 1,p (Ω), such that for anyvK $$\begin{gathered} \int\limits_\Omega {u_1 (\upsilon - u) dx + } \int\limits_\Omega {\left| {\nabla u} \right|^{p - 2} } \nabla u \cdot \nabla (\upsilon - u) dx \geqslant \int\limits_\Omega {f(\upsilon - u) dx for} a.e. t \in (0,T], \hfill \\ u = 0 on \partial \Omega \times (0,T] and u(0,x) = u_0 (x) for x \in \Omega . \hfill \\ \end{gathered} $$ We prove error bounds in energy type norms for the fully discrete approximation using the backward Euler time discretisation. In some notable cases, these error bounds converge at the optimal rate with respect to the space discretisation, provided the solutionu is sufficiently regular.  相似文献   

10.
Suppose a, b, and are reals witha<b and consider the following diffusion equation
  相似文献   

11.
Given H≥0 and bounded convex curves α1, ...,⇌n, α in the plane z=0 bounding domains D1, …, Dn, D, respectively, with if i ∈ j and with Di ⊂ D, we obtain several results proving the existence of a constanth depending only on H and on the geometry of the curves αi, α such that the Dirichlet problem for the constant mean curvature H equation: where may accept or not a solution.  相似文献   

12.
A simple qualitative model of dynamic combustion
  相似文献   

13.
For an equation of the form $$\begin{gathered} \frac{{\partial u}}{{\partial t}} - \sum\nolimits_{ij = 1}^n {{\text{ }}\alpha ^{ij} } \frac{{\partial ^2 u}}{{\partial x^i \partial x^j }} + \sum\nolimits_{ij = 1}^n {\beta _j^i x^i } \frac{{\partial u}}{{\partial x^i }} = 0, \hfill \\ {\text{ }}x \in R^n ,{\text{ }}t \in R^1 , \hfill \\ \end{gathered}$$ where α=(αij) is a constant nonnegative matrix andΒ=(Β i i ) is a constant matrix, subject to certain conditions, we construct a fundamental solution, similar in its structure to the fundamental solution of the heat conduction equation; we prove a mean value theorem and show that u(x0, t0) can be represented in the form of the mean value of u(x, t) with a nonnegative density over a level surface of the fundamental solution of the adjoint equation passing through the point (x0, t0); finally, we prove a parabolic maximum principle.  相似文献   

14.
Let BR be the ball centered at the origin with radius R in RN ( N ≥2). In this paper we study the existence of solution for the following elliptic systemu -△u+λu=p/(p + q)κ(| x |)) u(p-1)vq1,x ∈BR1,-△u+λu=p/(p + q)κ(| x |)) upv(q-1)1,x ∈BR1,u > 01,v > 01,x ∈ BR1,(u)/(v)=01,(v)/(v)=01,x ∈BRwhereλ > 0 , μ > 0 p ≥ 2, q ≥ 2,ν is the unit outward normal at the boundary BR . Under certainassumptions on κ ( | x | ), using variational methods, we prove the existence of a positive and radially increasing solution for this problem without growth conditions on the nonlinearity.  相似文献   

15.
A difference scheme is constructed for the solution of the variational equation $$\begin{gathered} a\left( {u, v} \right)---u \geqslant \left( {f, v---u} \right)\forall v \varepsilon K,K \{ vv \varepsilon W_2^2 \left( \Omega \right) \cap \mathop {W_2^1 \left( \Omega \right)}\limits^0 ,\frac{{\partial v}}{{\partial u}} \geqslant 0 a.e. on \Gamma \} ; \hfill \\ \Omega = \{ x = (x_1 ,x_2 ):0 \leqslant x_\alpha< l_\alpha ,\alpha = 1, 2\} \Gamma = \bar \Omega - \Omega ,a(u, v) = \hfill \\ = \int\limits_\Omega {\Delta u\Delta } vdx \equiv (\Delta u,\Delta v, \hfill \\ \end{gathered} $$ The following bound is obtained for this scheme: $$\left\| {y - u} \right\|_{W_2 \left( \omega \right)}^2 = 0(h^{(2k - 5)/4} )u \in W_2^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0(h^{\min (k - 2;1,5)/2} ),u \in W_\infty ^k \left( \Omega \right) \cap W_2^3 \left( \Omega \right)$$ The following bounds are obtained for the mixed boundary-value problem: $$\begin{gathered} \left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{\min \left( {k - 2;1,5} \right)} } \right),u \in W_\infty ^k \left( \Omega \right),\left\| {y - u} \right\|_{W_2^2 \left( \omega \right)} = 0\left( {h^{k - 2,5} } \right), \hfill \\ u \in W_2^k \left( \Omega \right),k \in \left[ {3,4} \right] \hfill \\ \end{gathered} $$ .  相似文献   

16.
This paper is concerned with a nonlocal hyperbolic system as follows utt = △u + (∫Ωvdx )^p for x∈R^N,t〉0 ,utt = △u + (∫Ωvdx )^q for x∈R^N,t〉0 ,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N,u(x,0)=u0(x),ut(x,0)=u01(x) for x∈R^N, where 1≤ N ≤3, p ≥1, q ≥ 1 and pq 〉 1. Here the initial values are compactly supported and Ω belong to R^N is a bounded open region. The blow-up curve, blow-up rate and profile of the solution are discussed.  相似文献   

17.
In this paper, we study the multiplicity of positive solutions to the following m-point boundary value problem of nonlinear fractional differential equations: Dqu(t) + f(t, u(t)) = 0, 0 < t < 1, u(0) = 0, u(1) =sum (μiDpu(t)|t = ξi ) from i =1 to ∞ m-2, where q ∈R , 1 相似文献   

18.
In this paper we present the analysis of an algorithm of Uzawa type to compute solutions of the quasi variational inequality $$\begin{gathered} (QVI)\left( {\frac{{\partial ^2 u}}{{\partial t^2 }},\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + \left( {\frac{{\partial u}}{{\partial x}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \left( {\frac{{\partial ^2 u}}{{\partial x\partial t}},\frac{{\partial \upsilon }}{{\partial x}} - \frac{{\partial ^2 u}}{{\partial x\partial t}}} \right) + \hfill \\ + \left[ {u(1,t) + \frac{{\partial u}}{{\partial t}}(1,t)} \right]\left[ {\upsilon (1) - \frac{{\partial u}}{{\partial t}}(1,t)} \right] + J(u;\upsilon ) - J\left( {u;\frac{{\partial u}}{{\partial t}}} \right) \geqslant \hfill \\ \geqslant \left( {f,\upsilon - \frac{{\partial u}}{{\partial t}}} \right) + F(t)\left[ {\upsilon (0) - \frac{{\partial u}}{{\partial t}}(0,t)} \right],t > 0,\forall \upsilon \in H^1 (0,1), \hfill \\ \end{gathered} $$ which is a model for the dynamics of a pile driven into the ground under the action of a pile hammer. In (QVI) (...) is the scalar product inL 2(0, 1) andJ(u;.) is a convex functional onH 1(0, 1), for eachu, describing the soil-pile friction effect.  相似文献   

19.
In this article, we study the homogenization of the family of parabolic equations over periodically perforated domains . Here, Ωɛ = ΩS ε is a periodically perforated domain andd ε is a sequence of positive numbers which goes to zero. We obtain the homogenized equation. The homogenization of the equations on a fixed domain and also the case of perforated domain with Neumann boundary condition was studied by the authors. The homogenization for a fixed domain and has been done by Jian. We also obtain certain corrector results to improve the weak convergence.  相似文献   

20.
A system of nonlinear Schrödinger equations $\begin{gathered} \frac{{\partial u_k }}{{\partial t}} = ia_k \Delta u_k + f_k (u,u^* ), t > 0, k = 1,...,m, \hfill \\ u_k (0,x) = u_{k0} (x), k = 1,...,m, x \in R^n . \hfill \\ \end{gathered} $ is investigated. Conditions that assure the globality of a solution are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号