首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This article deals with the envelope solitary waves and periodic waves in the AB equations that serve as model equations describing marginally unstable baroclinic wave packets in geophysical fluids and also ultra‐short pulses in nonlinear optics. An envelope solitary wave has a width proportional to its velocity and inversely proportional to its amplitude. The velocity of the envelope solitary wave is partially dependent on its amplitude in the sense that the amplitude determines the upper or lower limit of the velocity. When two envelope solitary waves collide, they survive the collision and retain their identities except for a shift in the positions of both the envelopes and the carrier waves. The periodic wave solutions in sine wave form may be stable or unstable depending upon the wave parameters. When the sine wave is destabilized by small perturbations, its long‐time evolution shows a Fermi–Pasta–Ulam‐type oscillation.  相似文献   

2.
研究了零攻角小钝头圆锥高超音速边界层的稳定性及转捩预测问题.小钝头的球头半径为0.5 mm,锥的半锥角为5°,来流马赫数为6.采用直接数值模拟方法得到了钝锥的基本流场,利用线性稳定性理论分析了等温壁面和绝热壁面条件下的第一、第二模态不稳定波,并用“e-N”方法对转捩位置进行了预测.在没有实验给出N值的情况下,暂取N为10.研究发现,壁面温度条件对于转捩位置有较大影响.绝热边界层的转捩位置比等温边界层的靠后.且尽管高马赫数下第二模态波的最大增长率远大于第一模态波的最大增长率,但绝热边界层的转捩位置是由第一模态不稳定波决定的.研究方法应能推广到有攻角的三维边界层流动的转捩预测.  相似文献   

3.
The stability of a supersonic boundary layer above a flexiblesurface is considered in the limit of large Reynolds numberand for Mach numbers O(1). Asymptotic theory of viscous–inviscidinteraction has been used for this purpose. We found that fora simple elastic surface, for which deflections are proportionalto local pressure differences, the boundary-layer flow remainsstable as it is for a rigid wall. However, when either dampingor surface inertia is included the flow becomes unstable. Moreover,in a certain range of wave numbers the boundary layer developsmore then one unstable mode. It is interesting that these modesare connected to one another via saddle points in the complex-frequencyplane. A more complex Kramer-type surface is also analysed andin some parameter ranges is found to permit the evolution ofunstable Tollmien–Schlichting waves. The neutral curvesare found for a variety of situations related to the parametersassociated with the flexible surface.  相似文献   

4.
Alfred Kluwick 《PAMM》2006,6(1):607-608
The propagation of short waves in turbulent single layer flows forming on inclined surfaces has received considerable interest in the past. It is well known that such flows on flat surfaces are unstable if the Froude number of the unperturbed uniform state exceeds a critical value. In the initial linear stage disturbances grow exponentially with propagation distance but it has been shown that weakly nonlinear effects may limit the maximum wave amplitude under strictly periodic conditions leading in turn to a train of permanent roll waves. The present study investigates how the flow behaviour is affected if the slope of the bounding surface is no longer constant but changing slowly in the streamwise direction. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The beforehand unclear relation between the viscous-inviscid interaction and the instability of viscous gas flows is illustrated using three-dimensional boundary-layer perturbations in the case of sub- and supersonic outer flows. The assumptions are considered under which asymptotic boundary layer equations with self-induced pressure are derived and the excitation mechanisms of eigenmodes (i.e., Tollmien-Schlichting waves) are described. The resulting dispersion relations are analyzed. The boundary layer in a supersonic flow is found to be stable with respect to two-dimensional perturbations, whereas, in the three-dimensional case, the modes become unstable. The increment of growth is investigated as a function of the Mach number and the orientation of the front of a three-dimensional Tollmien-Schlichting wave.  相似文献   

6.
The well-posedness of the hydrostatic equations is linked to long wave stability criteria for parallel shear flows. We revisit the Kelvin--Helmholtz instability with a free surface. In the wall-bounded case, the flow is unstable to all wave lengths. Short wave instabilities are localized and independent of boundary conditions. On the other hand, long waves are shown to be stable if the upper boundary is a free surface and gravity is sufficiently small. We also consider smooth velocity profiles of the base flow rather than a velocity jump. We show that stability of long waves for small gravity generally holds for monotone profiles U(y). On the other hand, this need not be the case if U is not monotone.  相似文献   

7.
Small-amplitude wave systems interacting nonlinearly can produce 0(1)amplitude streamwise vortex structures through the vortex–wave interaction mechanism described, for example, by [1–3]. The key feature of the interaction is that the spanwise velocity component of a vortex is small as compared to the streamwise component so that a nonlinear wave system driving the spanwise velocity component through Reynolds stresses can provoke a 0(1) response of the vortex. The wave system can correspond to either a Rayleigh or Tollmien–Schlichting wave disturbance, but previous work on the initiation of the process has been confined to Rayleigh waves (see, for example, [5, 6]). Here, we address the nonlinear initial value problem for Tollmien–Schlichting wave–vortex interactions in channel flows. The evolution of the disturbances is accounted for using the phase equation approach of [7]. We determine the circumstances, if any, under which the finite amplitude vortex–wave equilibrium states of [4] are generated. Our discussion of the nonlinear evolution of a wave system points toward a possible mechanism for the experimentally observed breakup of three-dimensional instabilities into shorter streamwise scales.  相似文献   

8.
Recently the "turbulent sublayer" was explored using a shear flow idealization akin to L. N. Howard's study of turbulent thermal convection [ 2 ]. There, the growing diffusive layers were studied to determine when they became unstable. Here, that work is extended to the first transitions of Couette and Poiseuille parallel flow. The merging boundary layers of the presumed flows pose a linear nonautonomous problem of following the time dependent first Lyapunov vector. As in Blasius flow, the first results emerge from perturbation theory, with corrections for streamwise evolution of the velocity profiles. The estimated critical Reynolds numbers for [back] transition from disorder to the laminar state are within 15% of the observations.  相似文献   

9.
It is shown in the literature that Tollmien−Schlichting waves can be damped and transition delayed by a proper modulation of the streamwise velocity in a boundary layer (BL), which can be obtained using miniature vortex generators (MVGs). Experiments show that the amplitude of TS waves is not always monotonically damped past the MVGs. In this study, direct numerical simulations and local stability analysis have been performed in order to provide an interpretation of the experiments and to characterize further the stabilization mechanism induced by this type of control. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
超音速平板边界层转捩中层流突变为湍流的机理研究   总被引:8,自引:2,他引:6  
采用空间模式,对来流Mach数为4.5的平板边界层转捩过程做了直接数值模拟.对结果进行的分析发现,在层流-湍流转捩的突变(breakdown)过程中,层流剖面得以快速转变为湍流剖面的机理在于平均剖面的修正导致了其稳定性特征的显著变化.虽然在层流下第2模态T-S波更不稳定,但在层流突变为湍流的过程中,第1模态不稳定波也起了重要作用.  相似文献   

11.
PSE在超音速边界层二次失稳问题中的应用   总被引:3,自引:0,他引:3  
用抛物化稳定性方程(PSE)研究超音速边界层中的二次失稳问题.结果显示无论二维基本扰动是第一模态还是第二模态的T-S波,二次失稳机制都起作用.三维亚谐波的放大率随其展向波数和二维基本波幅值的变化关系与不可压缩边界层中所得类似.但是,即使二维波的幅值大到2%的量级,三维亚谐波的最大放大率仍远小于最不稳定的第二模态二维T-S波的放大率.因此,二次失稳应该不是导致超音速边界层转捩的主要因素.  相似文献   

12.
Some boundary conditions used to numerically simulate tsunami generation and propagation are studied. Special attention is given to generating boundary conditions thatmake it possible to simulate tsunami waves with desired characteristics (amplitude, time period and, in general, waveform). Since the water flow velocity in a propagating tsunami wave is uniquely defined by its height and ocean depth, one can simulate a wave propagating from the boundary into the simulation area. This can be done by specifying the wave height and water flow velocity on the boundary. This method is used to numerically simulate the propagation of a tsunami from the source to the coast on a sequence of refined grids. In this numerical experiment the wave parameters are transferred from the larger area to the subarea via boundary conditions. This method can also generate a wave that has certain characteristics on a specified line.  相似文献   

13.
A class of solutions of the gas-dynamics equations containing a function arbitrariness is used for a qualitative and quantitative analysis of the gas flow which occurs as a result of the interaction between Riemann compression waves. Two types of flow are investigated matched flow, when the adiabatic exponent is matched in a special way with the initial geometry of the compressed volume, and the general case when there is no such matching. For matched interaction of non-self-similar Riemann waves, a phenomenon of partial collapse is established (only part of the initial mass of the gas is compressed to a point); here the asymptotic estimates for the velocity, density, internal energy and optical thickness are the same as for self-similar compression. It is proved that unmatched interaction of self-similar Riemann waves does not lead to unlimited unshocked compression of the gas; in this case a shock wave occurs when the maximum density of the gas is finite. The results obtained enable us to say that two-dimensional processes of unlimited compression are stable for a fairly wide range of perturbations.  相似文献   

14.
The whispering gallery modes propagating along the surface of an anisotropic elastic body are investigated with the use of space-time caustic expansions and space-time ray series. Each surface mode modulated in amplitude and frequency, is interpreted as a wave packet, with its amplitude’s maximum moving at a group velocity. On the boundary surface, asymptotic expressions for the group velocity (as a function of time and coordinates) are derived, which are in agreement with analogous formulas for Rayleigh waves of SV type in the isotropic case. Bibliography: 6 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 332, 2006, pp. 299–312.  相似文献   

15.
Summary We study a model equation describing the temporal evolution of nonlinear finite-amplitude waves on a density front in a rotating fluid. The linear spectrum includes an unstable interval where exponential growth of the amplitude is expected. It is shown that the length scale of the waves in the nonlinear situation is determined by the linear instabilities; the effect of the nonlinearities is to limit the amplitude's growth, leaving the wavelength unchanged. When linearly stable waves are prescribed as initial data, a short interval of rapid decrease in amplitude is encountered first, followed by a transfer of energy to the unstable part of the spectrum, where the fastest growing mode starts to dominate. A localized disturbance is broken up into its Fourier components, the linearly unstable modes grow at the expense of all other modes, and final amplitudes are determined by the nonlinear term. Periodic evolution of linearly unstable waves in the nonlinear situation is also observed. Based on the numerical results, the existence of low-order chaos in the partial differential equation governing weakly nonlinear wave evolution is conjectured.  相似文献   

16.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

17.
The three-dimensional transition of the wake flow behind a circular cylinder is studied in detail by direct numerical simulations using 3D incompressible N-S equations for Reynolds number ranging from 200 to 300. New features and vortex dynamics of the 3D transition of the wake are found and investigated. At Re = 200, the flow pattern is characterized by mode A instability. However, the spanwise characteristic length of the cylinder determines the transition features. Particularly for the specific spanwise charac-  相似文献   

18.
Finite-amplitude wave propagation is considered in flows of boundary-layer type when the wavelength is long compared to the boundary layer thickness. In this limit, the evolution of the amplitude is governed by the Benjamin-Ono equation and we have computed the coefficients of its nonlinear and dispersive terms for the specific case of Tietjens's model. The propagation of wave packets is also considered, and it is found that for packets centered about an O(1) wavenumber questions again arise relative to long waves, except that now the packet-induced mean flow is the “long wave.” By introducing an appropriate scaling for the far field and employing multiple scales in the direction transverse to the flow, it is shown how the mean-flow distortion can be made to vanish at infinity.  相似文献   

19.
采用直接数值模拟(DNS)方法,研究了在自由来流湍流与三维壁面局部粗糙作用下平板边界层内诱导产生不稳定T-S波的物理问题.数值结果可知,在平板边界层内发现了二维和三维T-S波组成的波包空间序列以及求得了波包向前传播的群速度大小,从而证明了自由来流湍流与三维壁面局部粗糙作用是激励平板边界层内诱导产生不稳定T-S波的一种机制.随后,建立了平板边界层内被激发的二维和三维T S波的初始幅值与自由来流湍流度,三维壁面局部粗糙的流向长度、展向宽度及法向高度之间的关系.这一问题的深入研究,进一步完善了流动稳定性与湍流理论.  相似文献   

20.
The evolution of small, angular dependent velocity disturbances in laminar pipe flow is studied. In particular, streamwise independent perturbations are considered. To fully describe the flow field, two equations are required, one for the radial and the other for the streamwise velocity perturbation. Whereas the former is homogeneous, the latter has the radial velocity component as a forcing term. First, the normal modes of the system are determined and analytical solutions for eigenfunctions, damping rates, and phase velocities are calculated. As the azimuthal wave number (n) increases, the damping rate increases and the phase velocities decrease. Particularly interesting are results showing that the phase velocities associated with the streamwise eigenfunctions are independent of the radial mode index when n = 1, and when n = 5 the same is obtained for phase velocities associated with the eigenfunctions of the radial component. Then, the initial value problem is treated and the time development of the disturbances is determined. The radial and the azimuthal velocity components always decay but, owing to the forcing, the streamwise component shows an initial algebraic growth, followed by a decay. The kinetic energy density is used to characterize the induced streamwise disturbance. Its dependence on the Reynolds number, the radial mode, and the azimuthal wave number is investigated. With a normalized initial disturbance, n = 1 gives the largest amplification, followed by n = 2 etc. However, for small times, higher values of n are associated with the largest energy density. As n increases, the distribution of the streamwise velocity perturbation becomes more concentrated to the region near the pipe wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号