首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gapped pulses for frequency-swept MRI   总被引:1,自引:0,他引:1  
A recently introduced method called SWIFT (SWeep Imaging with Fourier Transform) is a fundamentally different approach to MRI which is particularly well suited to imaging objects with extremely fast spin–spin relaxation rates. The method exploits a frequency-swept excitation pulse and virtually simultaneous signal acquisition in a time-shared mode. Correlation of the spin system response with the excitation pulse function is used to extract the signals of interest. With SWIFT, image quality is highly dependent on producing uniform and broadband spin excitation. These requirements are satisfied by using frequency-modulated pulses belonging to the hyperbolic secant family (HSn pulses). This article describes the experimental steps needed to properly implement HSn pulses in SWIFT. In addition, properties of HSn pulses in the rapid passage, linear region are investigated, followed by an analysis of the pulses after inserting the “gaps” needed for time-shared excitation and acquisition. Finally, compact expressions are presented to estimate the amplitude and flip angle of the HSn pulses, as well as the relative energy deposited by the SWIFT sequence.  相似文献   

2.
Turbo spectroscopic imaging (TSI) is a spin echo spectroscopic imaging technique in which two or more echoes are acquired per excitation to reduce the acquisition time. The application of TSI has primarily been limited to the detection of uncoupled spins because the signal from coupled spins is modulated as a function of echo time. In this work we demonstrate how the TSI sequence can be modified to observe spins like the C2 protons of Glx (≈3.75 ppm) which are involved solely in weak-coupling interactions. The technique exploits the chemical shift displacement effect by employing TSI refocusing pulses that have bandwidths which are less than the chemical shift difference between the target spins and the spins to which they are weakly coupled. The modified TSI sequence rewinds the J-evolution of the target protons in the slice of interest independently of the echo time or echo spacing, thereby removing any signal variation between successive echoes (apart from T2 relaxation effects). In this study we tailored the narrow-bandwidth TSI sequence for observation of the C2 Glx protons. The echo time was experimentally optimized to minimize signal contamination from myo-inositol, and the efficacy of the method was verified on phantom solutions of Glx and on brain in vivo.  相似文献   

3.
Current efficient magnetic resonance imaging (MRI) methods such as parallel-imaging and k-t methods encode MR signals using a set of effective encoding functions other than the Fourier basis. This work revisits the proposition of directly manipulating the set of effective encoding functions at the radiofrequency excitation step in order to increase MRI efficiency. This approach, often termed "broadband encoding," enables the application of algebraic matrix factorization technologies to extract efficiency by representing and encoding MR signal content in a compacted form. Broadband imaging equivalents of fast multiecho, parallel and k-t MRI are developed and analyzed. The potential of these techniques to increase the time efficiency of data acquisition is experimentally verified on a commercial MRI scanner using simple spin-echo imaging. A three-dimensional gradient-echo dynamic imaging application that demonstrates the potential benefits of this approach compared to the present state of the art for certain applications is also presented.  相似文献   

4.
There has been much recent interest in extending the technique of magnetic resonance imaging (MRI) down to the level of single spins with sub-optical wavelength resolution. However, the signal to noise ratio for images of individual spins is usually low and this necessitates long acquisition times and low temperatures to achieve high resolution. An exception to this is the nitrogen-vacancy (NV) color center in diamond whose spin state can be detected optically at room temperature. Here we apply MRI to magnetically equivalent NV spins and demonstrate fully resolved spectra with resolution well below the optical wavelength of the readout light. In addition, using a microwave version of MRI we achieved a resolution that is 1/270 in size of the coplanar striplines, which define the effective wavelength of the microwaves that were used to excite the transition. This technique can eventually be extended to imaging of large numbers of NVs in a confocal spot and possibly to image nearby dark spins via their mutual magnetic interaction with the NV spin.  相似文献   

5.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance images within a single scan, based on a spatial encoding of the spin interactions. This methodology relies on progressively dephasing spin coherences throughout a sample; for instance, by sweeping a radiofrequency pulse in the presence of a magnetic field gradient. When spins are suitably refocused by a second (acquisition) field gradient, this yields a time-domain signal reflecting in its magnitude the spatial distribution of spins throughout the sample. It is hereby shown that whereas the absolute value of the resulting signals conveys such imaging information, the hitherto unutilized phase modulation of the signal encodes the chemical shift offsets of the present speciae. Spectroscopically-resolved multidimensional images can thereby be retrieved in this fashion at no additional expense in either experimental complexity, sensitivity or acquisition time--simply by performing an additional analysis of the collected data. The resulting approach to single-scan spectroscopic imaging can also incorporate "RF shimming" compensating abilities, capable of providing high-resolution spectral and high-definition imaging data even under the presence of substantial magnetic field inhomogeneities. The principles of these methodologies as applied to spectroscopic imaging are briefly reviewed and compared against the background of traditional Fourier-based single-scan spectroscopic imaging protocols. Demonstrations of these new multidimensional spectroscopic MRI experiments on simple phantoms are also given.  相似文献   

6.
We propose a method to improve the sensitivity in volume selective detection based on the CARVE excitation sequence (I. Sersa and S. Macura, J. Magn. Reson. 135, 466-477 (1998)) which consists of signal acquisition with constant tip angle excitation and a short phase-encoding gradient pulse. Volume selectivity is achieved using the weighted average of a number of scans whose weights and gradient steps are determined by the shape of the excitation profile. The method is particularly useful for broadband volume selective detection of insensitive spins where the volume selection can be merged with the standard signal averaging process, without compromising the excitation bandwidth or sensitivity.  相似文献   

7.
With the proposed fast frequency selective MR imaging (FFSMRI) method, we focused on the elimination of all off-resonance components from the image of the observed object. To maintain imaging speed and simultaneously achieve good frequency selectivity, MRI was divided into two steps: signal acquisition and postprocessing. After the preliminary phase in which we determine imaging parameters, MRI takes place; the signal from the same object is successively acquired M times. As a result, we obtain M partial signals in k-space, from which we calculate the image of the observed object in postprocessing phase, after signal acquisition has been completed. With proper selection of parameters, it is possible to exclude from the image a majority of off-resonance components present in the observed object. However, we can decide to keep only a chosen off-resonance component in the image and eliminate all other components, including the on-resonance component and thus producing a different image from the same acquisition. The experiments with Fe(OH)(3) and oil showed that signal-to-noise ratio (SNR) can be improved by about a factor of four. The proposed FFSMRI method is suitable for frequency selective MR imaging and quantitative measurements in dynamic MRI where exclusion of off-resonance components can improve the reliability of measurement.  相似文献   

8.
Magnetic field gradients play a fundamental role in MR imaging and localized spectroscopy. The MRI experiment, in particular fast MRI, relies on precise gradient switching, which has become more demanding with the constantly growing number of fast imaging techniques. Here we present a simple MR method to measure the behavior of a magnetic field gradient waveform in an MR scanner. The method employs excitation of a thin slice, followed by application of the studied gradient and simultaneous FID acquisition. Measurements of different gradient waveforms were performed with a spherical phantom filled with doped water and positioned at the isocenter of the gradient set. The presented experiments demonstrate the capability of the technique to measure different gradient waveforms with an estimated error of less than 200 microT/m.  相似文献   

9.
Single-shot echo planar imaging (EPI) is one of the most suitable techniques for very fast image acquisition, especially in functional MRI. In standard EPI schemes the k-space center is sampled in the middle of the acquisition train. This leads to longer echo times for higher spatial resolutions, as well as reduced signal intensity and signal-to-noise ratio. Therefore, echo shifting to lower echo times is often used. After a brief overview on the theoretical background of various point-spread-functions (PSF) computational simulations are presented, which quantify the modulation amplitude of a binary test object sampled with either standard, zero-filled or shifted k-space acquisition. The results suggest that echo-shifting with zero-filling is not advantageous, not even with small matrix sizes, and that echo-shifting with additional acquisition of outer k-space lines decreases the modulation amplitude only slightly. Simulations were also performed on noise-corrupted test objects, indicating that the use of the echo-shifted scheme causes resolution loss of up to 30% compared to the standard scheme for a 128 by 128 pixel matrix at a noise level of 20%. Finally, in vivo experiments using different echo shifts are presented and the characteristics of signal and noise with varying TE are quantified.  相似文献   

10.
In this work two spectroscopic methods are described which allow rapid flow velocity quantification in the presence of a parabolic velocity distribution. This method requires only a single excitation and is based on flow encoding by periodically oscillating gradients. In the shown spin echo variant additional refocusing pulses correct for field inhomogeneities. A theoretical model is introduced, which describes the course of the derived spectra even in high flow region, where a significant part of the encoded spins leaves the sensitive area of the coil during data acquisition (outflow-effect). It was demonstrated that both methods can quantify flow velocities within the velocity range of 1mm/s up to 36 cm/s in the presence of a parabolic flow velocity distribution. The maximum velocity of the parabolic distribution is indicated in this method by a peak in the acquired spectrum from which the velocity could be quantified. Flow velocity quantification by periodically oscillating gradients seems a reasonable and fast alternative to established imaging techniques.  相似文献   

11.
This paper describes the development and application of a new fast MRI technique based on the DEFT principle. The sequence named MAgnetization RecoverY for Signal Enhancement (MARYSE) is composed of two completely symmetric gradient echoes separated by a 180 degrees refocusing pulse. The RF pulse scheme, 90 degrees x-180 degrees y-90 degrees -x enables restoration of the transverse magnetization along the longitudinal axis, and consequently artificially increases R1 relaxation rate. In this sequence, the period between the excitation pulse and the restoring pulse (Tem: transverse magnetization evolution time) is very short (< 10 ms). This makes possible a significant increase in signal-to-noise ratio, even with a relatively short repetition time (20 ms). Simulations were performed for different values of Tem and TR at definite T1 and T2 and for different values of T1 and T2 at constant Tem and TR. Relevant signal enhancement for species with long relaxation time constants as compared to classical gradient echo and fast spin-echo imaging was expected. In vitro studies on a fat/water phantom confirmed this simulation. Application of MARYSE to mouse brain imaging permitted to visualize almost completely cerebrospinal fluid of the ventricles, a signal usually partially saturated in fast gradient echo imaging.  相似文献   

12.
A new method for rapid NMR imaging dubbed FLASH (fast low-angle shot) imaging is described which, for example, allows measuring times of the order of 1 s (64 × 128 pixel resolution) or 6 s (256 × 256 pixels). The technique takes advantage of excitation pukes with small hip angles eliminating the need of waiting periods in between successive experiments. It is based on the acquisition of the free induction decay in the form of a gradient echo generated by reversal of the read gradient. The entire imaging time is only given by the number of projections desired times the duration of slice selection and data acquisition. The method results in about a 100-fold reduction in measuring time without sacrificing spatial resolution. Further advantages are an optimized signal-to-noise ratio, the applicability of commercial gradient systems, and the deposition of extremely low rf power. FLASH imaging is demonstrated on phantoms, animals, and human extremities using a 2.3 T 40 cm bore magnet system. 1H NMR images are obtained with variable relaxation time contrasts and without motional artifacts.  相似文献   

13.
Proton-electron double-resonance imaging (PEDRI) offers rapid image data collection and high resolution for spatial distribution of paramagnetic probes. Recently we developed the concept of variable field (VF) PEDRI which enables extracting a functional map from a limited number of images acquired at pre-selected EPR excitation fields using specific paramagnetic probes (Khramtsov et al., J. Magn. Reson. 202 (2010) 267-273). In this work, we propose and evaluate a new modality of PEDRI-based functional imaging with enhanced temporal resolution which we term variable radio frequency (VRF) PEDRI. The approach allows for functional mapping (e.g., pH mapping) using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. This approach uses a stationary magnetic field but different EPR RFs. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of a pH-sensitive nitroxide is converted to a pH map using a corresponding calibration curve. Elimination of field cycling decreased the acquisition time by exclusion periods of ramping and stabilization of the magnetic field. Improved magnetic field homogeneity and stability allowed for the fast MRI acquisition modalities such as fast spin echo. In total, about 30-fold decrease in EPR irradiation time was achieved for VRF PEDRI (2.4s) compared with VF PEDRI (70s). This is particularly important for in vivo applications enabling one to overcome the limiting stability of paramagnetic probes and sample overheating by reducing RF power deposition.  相似文献   

14.
Discretization of the Lippmann-Schwinger integral equation with complex conjugate gradient method and fast Fourier transform (CCGM-FFT) is solved, which can reduce the memory storage and the CPU time compared with the traditional method, MOM. Thus objects with large size and multiple scattering objects could be simulated with CCGM-FFT. The total intensity and the distribution of each field component of the dielectric and metallic objects under the excitation of the TE//TM-polarized wave are calculated with photon scanning tunnelling microscopy (PSTM) at the constant height. The simulating results are analysed and explained reasonably. The results show that the polarization plays an important role for imaging of PSTM.  相似文献   

15.
The problems of magnetic resonance imaging (MRI) of objects having a very wide spectrum of the nuclear magnetic resonance, where signals from all its lines are difficult to detect, have been investigated. It is proposed to carry out MRI using frequency-selective pulses. A method for setting optimally the pulse parameters and the start time of induction signal detection is described. The calculation results are compared with the MRI data obtained for a fluorocarbon compound.  相似文献   

16.
Behar V  Adam D 《Ultrasonics》2005,43(10):777-788
An effective aperture approach is used for optimization of a sparse synthetic transmit aperture (STA) imaging system with coded excitation and frequency division. A new two-stage algorithm is proposed for optimization of both the positions of the transmit elements and the weights of the receive elements. In order to increase the signal-to-noise ratio in a synthetic aperture system, temporal encoding of the excitation signals is employed. When comparing the excitation by linear frequency modulation (LFM) signals and phase shift key modulation (PSKM) signals, the analysis shows that chirps are better for excitation, since at the output of a compression filter the sidelobes generated are much smaller than those produced by the binary PSKM signals. Here, an implementation of a fast STA imaging is studied by spatial encoding with frequency division of the LFM signals. The proposed system employs a 64-element array with only four active elements used during transmit. The two-dimensional point spread function (PSF) produced by such a sparse STA system is compared to the PSF produced by an equivalent phased array system, using the Field II simulation program. The analysis demonstrates the superiority of the new sparse STA imaging system while using coded excitation and frequency division. Compared to a conventional phased array imaging system, this system acquires images of equivalent quality 60 times faster, when the transmit elements are fired in pairs consecutively and the power level used during transmit is very low. The fastest acquisition time is achieved when all transmit elements are fired simultaneously, which improves detectability, but at the cost of a slight degradation of the axial resolution. In real-time implementation, however, it must be borne in mind that the frame rate of a STA imaging system depends not only on the acquisition time of the data but also on the processing time needed for image reconstruction. Comparing to phased array imaging, a significant increase in the frame rate of a STA imaging system is possible if and only if an equivalent time efficient algorithm is used for image reconstruction.  相似文献   

17.
We propose an adaptive data acquisition technique that depends on the object to be imaged in magnetic resonance (MR) imaging. In this paper, we employed a matching pursuit (MP) algorithm to achieve the adaptive data acquisition. Since the matching pursuit is a greedy algorithm to find RF and gradient waveforms which are the best match for an object-signal, the signal can be decomposed with a few iterations and thereby lead reduction of imaging time in MR. To adopt the matching pursuit algorithm to the adaptive data acquisition in MRI, we have designed a dictionary which contains a windowed Fourier basis set. Because the basis set is localized spatially, the image signal could be divided into segmented signals so that matching pursuit with the segmented signals could lead to effective and object-dependent data acquisition. To verify the proposed technique, computer simulations and experiments are performed with a 1.0 T whole body MRI system.  相似文献   

18.
A method to generate shaped radiofrequency pulses for uniform excitation of electron spins in time-domain radio frequency (RF) electron paramagnetic resonance (EPR) imaging is presented. A commercial waveform generator was integrated with the transmit arm of the existing time-domain RF-EPR spectrometer to generate tailored excitation pulses with sub-nano second resolution for excitation with a 90 degrees flip-angle. A truncated sinc [sin(x)/x] pulse, tailored to compensate for the Q-profile (RF frequency response) of the resonator, was shown to yield images from phantom objects as well as in vivo images, with minimal distortion. These studies point to the advantages in using shaped sinc pulses to achieve improved uniform excitation over a relatively wide bandwidth region in time-domain RF-EPR imaging (RF-FT-EPRI).  相似文献   

19.
Recently, a new NMR method employing an rf excitation scheme with strongly reduced power has been introduced, which is based on modulating rf pulses according to Frank sequences. For many applications, a reduction of rf power is essential, e.g. to eliminate bulky rf pre-amplifiers or in medical high-field MRI to preserve patient safety. Another benefit of the new scheme are very short dead times allowing for measurements of samples with short relaxation times. In this work, Frank-sequence excitation is used for low-power imaging for the first time. Results of one-, two-, and three-dimensional imaging experiments are presented and compared to conventional images.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号