首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoactive yellow protein (PYP) is a water-soluble photosensor protein found in purple photosynthetic bacteria. Unlike bacterial rhodopsins, photosensor proteins composed of seven transmembrane helices and a retinal chromophore in halophilic archaebacteria, PYP is a highly soluble globular protein. The alpha/beta fold structure of PYP is a structural prototype of the PAS domain superfamily, many members of which function as sensors for various kinds of stimuli. To absorb a photon in the visible region, PYP has a p-coumaric acid chromophore binding to the cysteine residue via a thioester bond. It exists in a deprotonated trans form in the dark. The primary photochemical event is photo-isomerization of the chromophore from trans to cis form. The twisted cis chromophore in early intermediates is relaxed and finally protonated. Consequently, the chromophore becomes electrostatically neutral and rearrangement of the hydrogen-bonding network triggers overall structural change of the protein moiety, in which local conformational change around the chromophore is propagated to the N-terminal region. Thus, it is an ideal model for protein conformational changes that result in functional change, responding to stimuli and expressing physiological activity. In this paper, recent progress in investigation of the photoresponse of PYP is reviewed.  相似文献   

2.
3.
Importance of the CH/pi interaction on the structure and function of the photoactive yellow protein (PYP) was substantiated. Focusing on the phenyl ring of Phe6 adjacent to the alkyl chain of Lys123, the mutants for these amino acid residues were characterized. The results demonstrated that the mutants lacking the pi-electron at position 6 or the alkyl chain at position 123 show substantial malfunction. This is a clear example that single CH/pi weak interaction plays a crucial role in the normal action of the protein.  相似文献   

4.
Selectively bridged model compounds related to the chromophore in photoactive yellow protein have been synthesized where the single bond adjacent to the benzene ring (bond 1) and where both bond 1 and the adjacent double bond (bond 2) are bridged. They were compared to the nonbridged reference compound regarding their photophysical properties using steady-state and time-resolved fluorescence at various temperatures. Quantum chemical calculations were additionally performed and showed that several conformers are populated in the ground state. The neutral model compounds show that the nonradiative deactivation channel is linked to both single- and double-bond twisting. The relative importance of single-bond twisting is increased for the corresponding deprotonated hydroxy compounds with an enhanced donor character. The simultaneous photochemical activity of both single and double bonds explains the ease of photochemical isomerization in the confined environment of the natural PYP protein and also of the primary step in the vision process in rhodopsin.  相似文献   

5.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

6.
The signaling state of the photoactive yellow protein (PYP) photoreceptor is transiently developed via isomerization of its blue-light-absorbing chromophore. The associated structural rearrangements have large amplitude but, due to its transient nature and chemical exchange reactions that complicate NMR detection, its accurate three-dimensional structure in solution has been elusive. Here we report on direct structural observation of the transient signaling state by combining double electron electron resonance spectroscopy (DEER), NMR, and time-resolved pump-probe X-ray solution scattering (TR-SAXS/WAXS). Measurement of distance distributions for doubly spin-labeled photoreceptor constructs using DEER spectroscopy suggests that the signaling state is well ordered and shows that interspin-label distances change reversibly up to 19 ? upon illumination. The SAXS/WAXS difference signal for the signaling state relative to the ground state indicates the transient formation of an ordered and rearranged conformation, which has an increased radius of gyration, an increased maximum dimension, and a reduced excluded volume. Dynamical annealing calculations using the DEER derived long-range distance restraints in combination with short-range distance information from (1)H-(15)N HSQC perturbation spectroscopy give strong indication for a rearrangement that places part of the N-terminal domain in contact with the exposed chromophore binding cleft while the terminal residues extend away from the core. Time-resolved global structural information from pump-probe TR-SAXS/WAXS data supports this conformation and allows subsequent structural refinement that includes the combined energy terms from DEER, NMR, and SAXS/WAXS together. The resulting ensemble simultaneously satisfies all restraints, and the inclusion of TR-SAXS/WAXS effectively reduces the uncertainty arising from the possible spin-label orientations. The observations are essentially compatible with reduced folding of the I(2)' state (also referred to as the 'pB' state) that is widely reported, but indicates it to be relatively ordered and rearranged. Furthermore, there is direct evidence for the repositioning of the N-terminal region in the I(2)' state, which is structurally modeled by dynamical annealing and refinement calculations.  相似文献   

7.
Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. We report the Raman spectra for the dark state of PYP whose chromophore is isotopically labeled with 13C at the carbonyl carbon atom or at the ring carbon atoms. Spectra have been also measured with PYP in D2O where the exchangeable protons are deuterated. Most of the observed Raman bands are assigned on the basis of the observed isotope shifts and normal mode calculations using a density functional theory. We discuss the implication for the analysis of the infrared spectra of PYP. The comprehensive assignment provides a satisfactory framework for future investigations of the photocycle mechanism in PYP by vibrational spectroscopy.  相似文献   

8.
To study the role of the C-terminal domains in the photocycle of a light sensor histidine kinase (Ppr) having a photoactive yellow protein (PYP) domain as the photosensor domain, we analyzed the photocycles of the PYP domain of Ppr (Ppr-PYP) and full-length Ppr. The gene fragment for Ppr-PYP was expressed in Escherichia coli, and it was chemically reconstituted with p-coumaric acid; the full-length gene of Ppr was coexpressed with tyrosine ammonia-lyase and p-coumaric acid ligase for biosynthesis in cells. The light/dark difference spectra of Ppr-PYP were pH sensitive. They were represented as a linear combination of two independent difference spectra analogous to the PYP(L)/dark and PYP(M)/dark difference spectra of PYP from Halorhodospira halophila, suggesting that the pH dependence of the difference spectra is explained by the equilibrium shift between the PYP(L)- and PYP(M)-like intermediates. The light/dark difference spectrum of Ppr showed the equilibrium shift toward PYP(L) compared with that of Ppr-PYP. Kinetic measurements of the photocycles of Ppr and Ppr-PYP revealed that the C-terminal domains accelerate the recovery of the dark state. These observations suggest an interaction between the C-terminal domains and the PYP domain during the photocycle, by which light signals captured by the PYP domain are transferred to the C-terminal domains.  相似文献   

9.
Hydrogen bonding in a [2]rotaxane is shown to stabilise the phenolate anion of a coumaric amide chromophore by almost 3 pKa units; however, the effect on the UV spectral shift in the anion is small and, significantly given the photochemistry of PYP, despite the hydrogen bonding olefin photoisomerisation in the anionic rotaxane remains heavily suppressed.  相似文献   

10.
Photochemical hole-burning spectroscopy was used to study the excited-state electronic structure of the 4-hydroxycinnamyl chromophore in photoactive yellow protein (PYP). This system is known to undergo a trans-to-cis isomerization process on a femtosecond-to-picosecond time scale, similar to membrane-bound rhodopsins, and is characterized by a broad featureless absorbance at 446 nm. Resolved vibronic structure was observed for the hole-burned spectra obtained when PYP in phosphate buffer at pH 7 was frozen at low temperature and irradiated with narrow bandwidth laser light at 431 nm. The approximate homogeneous width of 752 cm-1 could be calculated from the deconvolution of the hole-burned spectra leading to an estimated dephasing time of approximately 14 fs for the PYP excited-state structure. The resolved vibronic structure also enabled us to obtain an estimated change in the C=C stretching frequency, from 1663 cm-1 in the ground state to approximately 1429 cm-1 upon photoexcitation. The results obtained allowed us to speculate about the excited-state structure of PYP. We discuss the data for PYP in relation to the excited-state model proposed for the photosynthetic membrane protein bacteriorhodopsin, and use it to explain the primary event in the function of photoactive biological protein systems. Photoexcitation was also carried out at 475 nm. The vibronic structure obtained was quite different both in terms of the frequencies and Franck-Condon envelope. The origin of this spectrum was tentatively assigned.  相似文献   

11.
12.
Atomistic QM/MM simulations have been carried out on the complete photocycle of Photoactive Yellow Protein, a bacterial photoreceptor, in which blue light triggers isomerization of a covalently bound chromophore. The "chemical role" of the protein cavity in the control of the photoisomerization step has been elucidated. Isomerization is facilitated due to preferential electrostatic stabilization of the chromophore's excited state by the guanidium group of Arg52, located just above the negatively charged chromophore ring. In vacuo isomerization does not occur. Isomerization of the double bond is enhanced relative to isomerization of a single bond due to the steric interactions between the phenyl ring of the chromophore and the side chains of Arg52 and Phe62. In the isomerized configuration (ground-state cis), a proton transfer from Glu46 to the chromophore is far more probable than in the initial configuration (ground-state trans). It is this proton transfer that initiates the conformational changes within the protein, which are believed to lead to signaling.  相似文献   

13.
A relatively inflexible 1D coordination polymer is induced to adopt either planar or quintuple helical supramolecular isomers according to the hydrogen bonding demands of the counter anions.  相似文献   

14.
We report on a detailed theoretical analysis, based on extensive ab initio calculations at the CC2 level, of the S(1) potential energy surface (PES) of the photoactive yellow protein (PYP) chromophore. The chromophore's photoisomerization pathway is shown to be fairly complex, involving an intimate coupling between single-bond and double-bond torsions. Furthermore, these torsional modes are shown to couple to a third coordinate of hydrogen out-of-plane (HOOP) type whose role in the isomerization is here identified for the first time. In addition, it is demonstrated that hydrogen bonding at the phenolate moiety of the chromophore can hinder the single-bond torsion and thus facilitates double-bond isomerization. These results suggest that the interplay between intramolecular factors and H-bonding determines the isomerization in native PYP.  相似文献   

15.
We have studied the structural changes induced by optical excitation of the chromophore in wild-type photoactive yellow protein (PYP) in liquid solution with a combined approach of polarization-sensitive ultrafast infrared spectroscopy and density functional theory calculations. We identify the nuC8-C9 marker modes for solution phase PYP in the P and I0 states, from which we derive that the first intermediate state I0 that appears with a 3 ps time constant can be characterized to have a cis geometry. This is the first unequivocal demonstration that the formation of I0 correlates with the conversion from the trans to the cis state. For the P and I0 states we compare the experimentally measured vibrational band patterns and anisotropies with calculations and find that for both trans and cis configurations the planarity of the chromophore has a strong influence. The C7=C8-(C9=O)-S moiety of the chromophore in the dark P state has a trans geometry with the C=O group slightly tilted out-of-plane, in accordance with the earlier reported structure obtained in an X-ray diffraction study of PYP crystals. In the case of I0, experiment and theory are only in agreement when the C7=C8-(C9=O)-S moiety has a planar configuration. We find that the carboxylic side group of Glu46 that is hydrogen-bonded to the chromophore phenolate oxygen does not alter its orientation on going from the electronic ground P state, via the electronic excited P state to the intermediate I0 state, providing conclusive experimental evidence that the primary stages of PYP photoisomerization involve flipping of the enone thioester linkage without significant relocation of the phenolate moiety.  相似文献   

16.
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.  相似文献   

17.
The role of anharmonic effects in the vibrational spectroscopy of the dark state and two major chromophore intermediates of the photoactive yellow protein (PYP) photocycle is examined via ab initio vibrational self-consistent field (VSCF) calculations and time-resolved resonance Raman spectroscopy. For the first time, anharmonicity is considered explicitly in calculating the vibrational spectra of an ensemble consisting of the PYP chromophore surrounded by model compounds used as mimics of the important active-site residues. Predictions of vibrational frequencies on an ab initio corrected semiempirical potential energy surface show remarkable agreement with experimental frequencies for all three states, thus shedding light on the potential along the reaction path. For example, calculated frequencies for vibrational modes of the red-shifted intermediate, PYPL, exhibit an overall average error of 0.82% from experiment. Upon analysis of anharmonicity patterns in the PYP modes we observe a decrease in anharmonicity in the C8-C9 stretching mode nu29 (trans-cis isomerization marker mode) with the onset of the cis configuration in PYPL. This can be attributed to the loss of the hydrogen-bonding character of the adjacent C9-O2 to the methylamine (Cys69 backbone). For several of the modes, the anharmonicity is mostly due to mode-mode coupling, while for others it is mostly intrinsic. This study shows the importance of the inclusion of anharmonicity in theoretical spectroscopic calculations, and the sensitivity of experiments to anharmonicity. The characterization of protein active-site residues by small molecular mimics provides an acceptable chemical structural representation for biomolecular spectroscopy calculations.  相似文献   

18.
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.  相似文献   

19.
Using advanced QM/MM methods, the surprisingly negligible shift of the lowest-lying bright electronic excitation of the deprotonated p-coumaric acid (pCA(-)) within the photoactive yellow protein (PYP) is shown to stem from a subtle balance between hypsochromic and bathochromic effects. More specifically, it is found that the change in the excitation energy as a consequence of the disruption of the planarity of pCA(-) inside PYP is nearly canceled out by the shift induced by the intermolecular interactions of the chromophore and the protein as a whole. These results provide important insights about the primary absorption and the tuning of the chromophore by the protein environment in PYP.  相似文献   

20.
Hydrogen bonds involving a carbon donor are very common in protein structures, and energy calculations suggest that Calpha-H...O hydrogen bonds could be about one-half the strength of traditional hydrogen bonds. It has therefore been proposed that these nontraditional hydrogen bonds could be a significant factor in stabilizing proteins, particularly membrane proteins as there is a low dielectric and no competition from water in the bilayer core. Nevertheless, this proposition has never been tested experimentally. Here, we report an experimental test of the significance of Calpha-H...O bonds for protein stability. Thr24 in bacteriorhodopsin, which makes an interhelical Calpha-H...O hydrogen bond to the Calpha of Ala51, was changed to Ala, Val, and Ser, and the thermodynamic stability of the mutants was measured. None of the mutants had significantly reduced stability. In fact, T24A was more stable than the wild-type protein by 0.6 kcal/mol. Crystal structures were determined for each of the mutants, and, while some structural changes were seen for T24S and T24V, T24A showed essentially no apparent structural alteration that could account for the increased stability. Thus, Thr24 appears to destabilize the protein rather than stabilize. Our results suggest that Calpha-H...O bonds are not a major contributor to protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号