首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Motivated by topology control in ad hoc wireless networks, Power Assignment is a family of problems, each defined by a certain connectivity constraint (such as strong connectivity). The input consists of a directed complete weighted digraph G=(V,c) (that is, ). The power of a vertex u in a directed spanning subgraph H is given by , and corresponds to the energy consumption required for node u to transmit to all nodes v with uvE(H). The power of H is given by . Power Assignment seeks to minimize p(H) while H satisfies the given connectivity constraint.Min-Power Bounded-Hops Broadcast is a power assignment problem which has as additional input a positive integer d and a rV. The output H must be a r-rooted outgoing arborescence of depth at most d. We give an (O(logn),O(logn)) bicriteria approximation algorithm for Min-Power Bounded-Hops Broadcast: that is, our output has depth at most O(dlogn) and power at most O(logn) times the optimum solution.For the Euclidean case, when c(u,v)=c(v,u)=∥u,vκ (here ∥u,v∥ is the Euclidean distance and κ is a constant between 2 and 5), the output of our algorithm can be modified to give a O((logn)κ) approximation ratio. Previous results for Min-Power Bounded-Hops Broadcast are only exact algorithms based on dynamic programming for the case when the nodes lie on the line and c(u,v)=c(v,u)=∥u,vκ.Our bicriteria results extend to Min-Power Bounded-Hops Strong Connectivity, where H must have a path of at most d edges in between any two nodes. Previous work for Min-Power Bounded-Hops Strong Connectivity consists only of constant or better approximation for special cases of the Euclidean case.  相似文献   

2.
The Wiener index W(G)=∑{u,v}⊂V(G)d(u,v), the hyper-Wiener index and the reverse-Wiener index , where d(u,v) is the distance of two vertices u,v in G, d2(u,v)=d(u,v)2, n=|V(G)| and D is the diameter of G. In [M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math. 157 (2009) 794-803], Eliasi and Taeri introduced the F-sums of two connected graphs. In this paper, we determine the hyper- and reverse-Wiener indices of the F-sum graphs and, subject to some condition, we present some exact expressions of the reverse-Wiener indices of the F-sum graphs.  相似文献   

3.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

4.
A.R. Rao 《Discrete Mathematics》2006,306(14):1595-1600
For a digraph G, let R(G) (respectively, R(k)(G)) be the number of ordered pairs (u,v) of vertices of G such that uv and v is reachable from u (respectively, reachable from u by a path of length ?k). In this paper, we study the range Sn of R(G) and the range of R(k)(G) as G varies over all possible digraphs on n vertices. We give a sufficient condition and a necessary condition for an integer to belong to Sn. These determine the set Sn for all n?208. We also determine for k?4 and show that whenever n?k+(k+1)0.57+2, for arbitrary k.  相似文献   

5.
Let G be a graph of order n and S be a vertex set of q vertices. We call G,S-pancyclable, if for every integer i with 3≤iq there exists a cycle C in G such that |V(C)∩S|=i. For any two nonadjacent vertices u,v of S, we say that u,v are of distance two in S, denoted by dS(u,v)=2, if there is a path P in G connecting u and v such that |V(P)∩S|≤3. In this paper, we will prove that if G is 2-connected and for all pairs of vertices u,v of S with dS(u,v)=2, , then there is a cycle in G containing all the vertices of S. Furthermore, if for all pairs of vertices u,v of S with dS(u,v)=2, , then G is S-pancyclable unless the subgraph induced by S is in a class of special graphs. This generalizes a result of Fan [G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory B 37 (1984) 221-227] for the case when S=V(G).  相似文献   

6.
7.
Let 1=d1(n)<d2(n)<?<dτ(n)=n be the sequence of all positive divisors of the integer n in increasing order. We say that the divisors of n are y-dense iff max1?i<τ(n)di+1(n)/di(n)?y. Let D(x,y,z) be the number of positive integers not exceeding x whose divisors are y-dense and whose prime divisors are bigger than z, and let , and . We show that is equivalent, in a large region, to a function d(u,v) which satisfies a difference-differential equation. Using that equation we find that d(u,v)?(1−u/v)/(u+1) for v?3+ε. Finally, we show that d(u,v)=eγd(u)+O(1/v), where γ is Euler's constant and d(u)∼x−1D(x,y,1), for fixed u. This leads to a new estimate for d(u).  相似文献   

8.
9.
We show how to find in Hamiltonian graphs a cycle of length nΩ(1/loglogn)=exp(Ω(logn/loglogn)). This is a consequence of a more general result in which we show that if G has a maximum degree d and has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in O(n3) time a cycle in G of length kΩ(1/logd). From this we infer that if G has a cycle of length k, then one can find in O(n3) time a cycle of length kΩ(1/(log(n/k)+loglogn)), which implies the result for Hamiltonian graphs. Our results improve, for some values of k and d, a recent result of Gabow (2004) [11] showing that if G has a cycle of length k, then one can find in polynomial time a cycle in G of length . We finally show that if G has fixed Euler genus g and has a cycle with k vertices (or a 3-cyclable minor H with k vertices), then we can find in polynomial time a cycle in G of length f(g)kΩ(1), running in time O(n2) for planar graphs.  相似文献   

10.
Place tokens on distinct vertices of an arbitrary finite digraph with n vertices which may contain cycles or loops. Each of two players alternately selects a token and moves it from its present position u to a neighboring vertex v along a directed edge which may be a loop. If v is occupied, and uv, both tokens get annihilated and phase out of the game. The player first unable to move is the loser, the other the winner. If there is no last move, the outcome is declared a draw. An O(n6) algorithm for computing the previous-player-winning, next-player-winning and draw positions of the game is given. Furthermore, an algorithm is given for computing a best strategy in O(n6) steps and winning—starting from a next-player-winning position—in O(n5) moves.  相似文献   

11.
A graph is denoted by G with the vertex set V(G) and the edge set E(G). A path P = 〈v0v1, … , vm〉 is a sequence of adjacent vertices. Two paths with equal length P1 = 〈 u1u2, … , um〉 and P2 = 〈 v1v2, … , vm〉 from a to b are independent if u1 = v1 = a, um = vm = b, and ui ≠ vi for 2 ? i ? m − 1. Paths with equal length from a to b are mutually independent if they are pairwisely independent. Let u and v be two distinct vertices of a bipartite graph G, and let l be a positive integer length, dG(uv) ? l ? ∣V(G) − 1∣ with (l − dG(uv)) being even. We say that the pair of vertices u, v is (ml)-mutually independent bipanconnected if there exist m mutually independent paths with length l from u to v. In this paper, we explore yet another strong property of the hypercubes. We prove that every pair of vertices u and v in the n-dimensional hypercube, with dQn(u,v)?n-1, is (n − 1, l)-mutually independent bipanconnected for every with (l-dQn(u,v)) being even. As for dQn(u,v)?n-2, it is also (n − 1, l)-mutually independent bipanconnected if l?dQn(u,v)+2, and is only (ll)-mutually independent bipanconnected if l=dQn(u,v).  相似文献   

12.
An inverse problem is solved, by stating that the regular linear functionals u and v associated to linearly related sequences of monic orthogonal polynomials n(Pn) and n(Qn), respectively, in the sense
  相似文献   

13.
Let id(v) denote the implicit degree of a vertex v in a graph G. We define G to be implicit 1-heavy (implicit 2-heavy) if at least one (two) of the end vertices of each induced claw has (have) implicit degree at least n/2. In this paper, we prove that: (a) Let G be a 2-connected graph of order n ≥ 3. If G is implicit 2-heavy and |N(u) ∩ N(v)| ≥ 2 for every pair of vertices u and v with d(u, v) = 2 and max{id(u), id(v)} < n/2, then G is hamiltonian. (b) Let G be a 3-connected graph of order n ≥ 3. If G is implicit 1-heavy and |N(u) ∩ N(v)| ≥ 2 for each pair of vertices u and v with d(u, v) = 2 and max{id(u), id(v)} < n/2, then G is hamiltonian.  相似文献   

14.
As an edge variant of the well-known irregularity strength of a graph G=(V,E) we investigate edge irregular total labellings, i.e. functions f:VE→{1,2,…,k} such that f(u)+f(uv)+f(v)≠f(u)+f(uv)+f(v) for every pair of different edges uv,uvE. The smallest possible k is the total edge irregularity strength of G. Confirming a conjecture by Ivan?o and Jendrol’ for a large class of graphs we prove that the natural lower bound is tight for every graph of order n, size m and maximum degree Δ with m>111000Δ. This also implies that the probability that a random graph from G(n,p(n)) satisfies the Ivan?o-Jendrol’ Conjecture tends to 1 as n for all functions p∈[0,1]N. Furthermore, we prove that is an upper bound for every graph G of order n and size m≥3 whose edges are not all incident to a single vertex.  相似文献   

15.
Local-edge-connectivity in digraphs and oriented graphs   总被引:2,自引:0,他引:2  
A digraph without any cycle of length two is called an oriented graph. The local-edge-connectivityλ(u,v) of two vertices u and v in a digraph or graph D is the maximum number of edge-disjoint u-v paths in D, and the edge-connectivity of D is defined as . Clearly, λ(u,v)?min{d+(u),d-(v)} for all pairs u and v of vertices in D. Let δ(D) be the minimum degree of D. We call a graph or digraph D maximally edge-connected when λ(D)=δ(D) and maximally local-edge-connected when
λ(u,v)=min{d+(u),d-(v)}  相似文献   

16.
In this paper, we present an efficient algorithm to find next-to-shortest path between any pair of vertices u,v on permutation graphs with n vertices which runs in O(n 2) time.  相似文献   

17.
We show the existence of entire explosive positive radial solutions for quasilinear elliptic systems div(|∇u|m−2u)=p(|x|)g(v), div(|∇v|n−2v)=q(|x|)f(u) on , where f and g are positive and non-decreasing functions on (0,∞) satisfying the Keller-Osserman condition.  相似文献   

18.
We study the size of OBDDs (ordered binary decision diagrams) for representing the adjacency function fG of a graph G on n vertices. Our results are as follows:
-
for graphs of bounded tree-width there is an OBDD of size O(logn) for fG that uses encodings of size O(logn) for the vertices;
-
for graphs of bounded clique-width there is an OBDD of size O(n) for fG that uses encodings of size O(n) for the vertices;
-
for graphs of bounded clique-width such that there is a clique-width expression for G whose associated binary tree is of depth O(logn) there is an OBDD of size O(n) for fG that uses encodings of size O(logn) for the vertices;
-
for cographs, i.e. graphs of clique-width at most 2, there is an OBDD of size O(n) for fG that uses encodings of size O(logn) for the vertices. This last result complements a recent result by Nunkesser and Woelfel [R. Nunkesser, P. Woelfel, Representation of graphs by OBDDs, in: X. Deng, D. Du (Eds.), Proceedings of ISAAC 2005, in: Lecture Notes in Computer Science, vol. 3827, Springer, 2005, pp. 1132-1142] as it reduces the size of the OBDD by an O(logn) factor using encodings whose size is increased by an O(1) factor.
  相似文献   

19.
Let G=(V,E) be a tree on n?2 vertices and let vV. Let L(G) be the Laplacian matrix of G and μ(G) be its algebraic connectivity. Let Gk,l, be the graph obtained from G by attaching two new paths P:vv1v2vk and Q:vu1u2ul of length k and l, respectively, at v. We prove that if l?k?1 then μ(Gk-1,l+1)?μ(Gk,l). Let (v1,v2) be an edge of G. Let be the tree obtained from G by deleting the edge (v1,v2) and identifying the vertices v1 and v2. Then we prove that As a corollary to the above results, we obtain the celebrated theorem on algebraic connectivity which states that among all trees on n vertices, the path has the smallest and the star has the largest algebraic connectivity.  相似文献   

20.
The Randi? index of a graph G is defined as , where d(u) is the degree of vertex u and the summation goes over all pairs of adjacent vertices u, v. A conjecture on R(G) for connected graph G is as follows: R(G)≥r(G)−1, where r(G) denotes the radius of G. We proved that the conjecture is true for biregular graphs, connected graphs with order n≤10 and tricyclic graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号