首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We consider the following 2-person game which is played with an (initially uncolored) digraph D, a finite color set C, and nonnegative integers a, b, and d. Alternately, player I colors a vertices and player II colors b vertices with colors from C. Whenever a player colors a vertex v, all in-arcs (w,v) that do not come from a vertex w previously colored with the same color as v are deleted. For each color i the defect digraphDi is the digraph induced by the vertices of color i at a certain state of the game. The main rule the players have to respect is that at every time for any color i the digraph Di has maximum total degree of at most d. The game ends if no vertex can be colored any more according to this rule. Player I wins if D is completely colored at the end of the game, otherwise player II wins. The smallest cardinality of a color set C with which player I has a winning strategy for the game is called . This parameter generalizes several variants of Bodlaender’s game chromatic number. We determine the tight (resp., nearly tight) upper bound (resp., ) for the d-relaxed (a,b)-game chromatic number of orientations of forests (resp., undirected forests) for any d and ab≥1. Furthermore we prove that these numbers cannot be bounded in case a<b.  相似文献   

2.
This paper investigates a competitive version of the coloring game on a finite graph G. An asymmetric variant of the (r,d)-relaxed coloring game is called the (r,d)-relaxed (a,b)-coloring game. In this game, two players, Alice and Bob, take turns coloring the vertices of a graph G, using colors from a set X, with |X|=r. On each turn Alice colors a vertices and Bob colors b vertices. A color αX is legal for an uncolored vertex u if by coloring u with color α, the subgraph induced by all the vertices colored with α has maximum degree at most d. Each player is required to color an uncolored vertex legally on each move. The game ends when there are no remaining uncolored vertices. Alice wins the game if all vertices of the graph are legally colored, Bob wins if at a certain stage there exists an uncolored vertex without a legal color. The d-relaxed (a,b)-game chromatic number, denoted by , of G is the least r for which Alice has a winning strategy in the (r,d)-relaxed (a,b)-coloring game.The (r,d)-relaxed (1,1)-coloring game has been well studied and there are many interesting results. For the (r,d)-relaxed (a,1)-coloring game, this paper proves that if a graph G has an orientation with maximum outdegree k and ak, then for all dk2+2k; If ak3, then (a,1)- for all d≥2k+1.  相似文献   

3.
4.
5.
For a graph G and its complement , we define the graph coloring polytope P(G) to be the convex hull of the incidence vectors of star partitions of . We examine inequalities whose support graphs are webs and antiwebs appearing as induced subgraphs in G. We show that for an antiweb in G the corresponding inequality is facet-inducing for P(G) if and only if is critical with respect to vertex colorings. An analogous result is also proved for the web inequalities.  相似文献   

6.
For a connected graph G and any two vertices u and v in G, let D(u,v) denote the length of a longest u-v path in G. A hamiltonian coloring of a connected graph G of order n is an assignment c of colors (positive integers) to the vertices of G such that |c(u)−c(v)|+D(u,v)≥n−1 for every two distinct vertices u and v in G. The value of a hamiltonian coloring c is the maximum color assigned to a vertex of G. The hamiltonian chromatic number of G is taken over all hamiltonian colorings c of G. In this paper we discuss the hamiltonian chromatic number of graphs G with . As examples, we determine the hamiltonian chromatic number for a class of caterpillars, and double stars.  相似文献   

7.
We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(n3m) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was .  相似文献   

8.
The Majority game is played by a questioner () and an answerer (). holds n elements, each of which can be labeled as 0 or 1. is trying to identify some element holds as having the Majority label or, in the case of a tie, claim there is none. To do this asks questions comparing whether two elements have the same or different label. ’s goal is to ask as few questions as possible while ’s goal is to delay as much as possible. Let q denote the minimal number of questions needed for to identify a Majority element regardless of ’s answers.In this paper we investigate upper and lower bounds for q in a variation of the Majority game, where is allowed to lie up to t times. We consider two versions of the game, the adaptive (where questions are asked sequentially) and the oblivious (where questions are asked in one batch).  相似文献   

9.
We consider vertex coloring of an acyclic digraph in such a way that two vertices which have a common ancestor in receive distinct colors. Such colorings arise in a natural way when bounding space for various genetic data for efficient analysis. We discuss the corresponding down-chromatic number and derive an upper bound as a function of , the maximum number of descendants of a given vertex, and the degeneracy of the corresponding hypergraph. Finally, we determine an asymptotically tight upper bound of the down-chromatic number in terms of the number of vertices of and .  相似文献   

10.
11.
A discrete function f defined on Zn is said to be logconcave if for , , . A more restrictive notion is strong unimodality. Following Barndorff-Nielsen [O. Barndorff-Nielsen, Unimodality and exponential families, Commun. Statist. 1 (1973) 189-216] a discrete function is called strongly unimodal if there exists a convex function such that  if . In this paper sufficient conditions that ensure the strong unimodality of a multivariate discrete distribution, are given. Examples of strongly unimodal multivariate discrete distributions are presented.  相似文献   

12.
It is conjectured by Erd?s, Graham and Spencer that if 1≤a1a2≤?≤as are integers with , then this sum can be decomposed into n parts so that all partial sums are ≤1. This is not true for as shown by a1=?=an−2=1, . In 1997 Sandor proved that Erd?s-Graham-Spencer conjecture is true for . Recently, Chen proved that the conjecture is true for . In this paper, we prove that Erd?s-Graham-Spencer conjecture is true for .  相似文献   

13.
Motivated by wavelength-assignment problems for all-to-all traffic in optical networks, we study graph parameters related to sets of paths connecting all pairs of vertices. We consider sets of both undirected and directed paths, under minimisation criteria known as edge congestion and wavelength count; this gives rise to four parameters of a graph G: its edge forwarding index π(G), arc forwarding index , undirected optical index , and directed optical index .In the paper we address two long-standing open problems: whether the equality holds for all graphs, and whether indices π(G) and are hard to compute. For the first problem, we give an example of a family of planar graphs {Gk} such that . For the second problem, we show that determining either π(G) or is NP-hard.  相似文献   

14.
Let G be a family of graphs whose edges are colored with elements from a set R of r colors. We assume no two vertices of G are joined by more than one edge of color i for any iR, for each GG. will denote the complete graph with r edges joining any pair of distinct vertices, one of each of the r colors. We describe necessary and asymptotically sufficient conditions on n for the existence of a family D of subgraphs of , each of which is an isomorphic copy of some graph in G, so that each edge of appears in exactly one of the subgraphs in D.  相似文献   

15.
16.
17.
18.
An equivalence graph is a disjoint union of cliques, and the equivalence number of a graph G is the minimum number of equivalence subgraphs needed to cover the edges of G. We consider the equivalence number of a line graph, giving improved upper and lower bounds: . This disproves a recent conjecture that is at most three for triangle-free G; indeed it can be arbitrarily large.To bound we bound the closely related invariant σ(G), which is the minimum number of orientations of G such that for any two edges e,f incident to some vertex v, both e and f are oriented out of v in some orientation. When G is triangle-free, . We prove that even when G is triangle-free, it is NP-complete to decide whether or not σ(G)≤3.  相似文献   

19.
We bound the mean distance in a connected graph which is not a tree in terms of its order n and its girth g. On one hand, we show that the mean distance is at most if g is even and at most if g is odd. On the other hand, we prove that the mean distance is at least unless G is an odd cycle. This resolves two conjectures of AutoGraphiX.  相似文献   

20.
Let G be a graph with minimum degree δ(G), edge-connectivity λ(G), vertex-connectivity κ(G), and let be the complement of G.In this article we prove that either λ(G)=δ(G) or . In addition, we present the Nordhaus-Gaddum type result . A family of examples will show that this inequality is best possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号