首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wenjun Liu 《Acta Appl Math》2010,110(1):153-165
In this paper we consider a system of two coupled viscoelastic equations with Dirichlet boundary condition which describes the interaction between two different fields arising in viscoelasticity. For certain class of relaxation functions and certain initial data, we prove that the decay rate of the solution energy is similar to that of relaxation functions which is not necessarily of exponential or polynomial type. This result improves earlier one of Messaoudi and Tatar (Appl. Anal. 87(3):247–263, 2008) and extends some existing results concerning the general decay for a single equation to the case of a system.  相似文献   

2.
We introduce the new idea of recurrent functions to provide a new semilocal convergence analysis for Newton-type methods, under mild differentiability conditions. It turns out that our sufficient convergence conditions are weaker, and the error bounds are tighter than in earlier studies in some interesting cases (Chen, Ann Inst Stat Math 42:387–401, 1990; Chen, Numer Funct Anal Optim 10:37–48, 1989; Cianciaruso, Numer Funct Anal Optim 24:713–723, 2003; Cianciaruso, Nonlinear Funct Anal Appl 2009; Dennis 1971; Deuflhard 2004; Deuflhard, SIAM J Numer Anal 16:1–10, 1979; Gutiérrez, J Comput Appl Math 79:131–145, 1997; Hernández, J Optim Theory Appl 109:631–648, 2001; Hernández, J Comput Appl Math 115:245–254, 2000; Huang, J Comput Appl Math 47:211–217, 1993; Kantorovich 1982; Miel, Numer Math 33:391–396, 1979; Miel, Math Comput 34:185–202, 1980; Moret, Computing 33:65–73, 1984; Potra, Libertas Mathematica 5:71–84, 1985; Rheinboldt, SIAM J Numer Anal 5:42–63, 1968; Yamamoto, Numer Math 51: 545–557, 1987; Zabrejko, Numer Funct Anal Optim 9:671–684, 1987; Zinc̆ko 1963). Applications and numerical examples, involving a nonlinear integral equation of Chandrasekhar-type, and a differential equation are also provided in this study.  相似文献   

3.
In this paper, we establish a decay result of global solutions and the existence of the global attractor for higher-dimensional linear thermoviscoelastic equations by introducing a velocity feedback on a part of the boundary and using multiplier techniques. We extend the results in Messaoudi and Mustafa (Nonlinear Anal. TMA 10:3132–3140, 2009) for a viscoelastic system to those for a thermoviscoelastic system.  相似文献   

4.
We consider the wave equation on an interval of length 1 with an interior damping at ξ. It is well-known that this system is well-posed in the energy space and that its natural energy is dissipative. Moreover, as it was proved in Ammari et al. (Asymptot Anal 28(3–4):215–240, 2001), the exponential decay property of its solution is equivalent to an observability estimate for the corresponding conservative system. In this case, the observability estimate holds if and only if ξ is a rational number with an irreducible fraction x = \fracpq,\xi=\frac{p}{q}, where p is odd, and therefore under this condition, this system is exponentially stable in the energy space. In this work, we are interested in the finite difference space semi-discretization of the above system. As for other problems (Zuazua, SIAM Rev 47(2):197–243, 2005; Tcheugoué Tébou and Zuazua, Adv Comput Math 26:337–365, 2007), we can expect that the exponential decay of this scheme does not hold in general due to high frequency spurious modes. We first show that this is indeed the case. Secondly we show that a filtering of high frequency modes allows to restore a quasi exponential decay of the discrete energy. This last result is based on a uniform interior observability estimate for filtered solutions of the corresponding conservative semi-discrete system.  相似文献   

5.
In this paper, we study a variation of the equations of a chemotaxis kinetic model and investigate it in one dimension. In fact, we use fractional diffusion for the chemoattractant in the Othmar–Dunbar–Alt system (Othmer in J Math Biol 26(3):263–298, 1988). This version was exhibited in Calvez in Amer Math Soc, pp 45–62, 2007 for the macroscopic well-known Keller–Segel model in all space dimensions. These two macroscopic and kinetic models are related as mentioned in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009, Chalub, Math Models Methods Appl Sci, 16(7 suppl):1173–1197, 2006, Chalub, Monatsh Math, 142(1–2):123–141, 2004, Chalub, Port Math (NS), 63(2):227–250, 2006. The model we study here behaves in a similar way to the original model in two dimensions with the spherical symmetry assumption on the initial data which is described in Bournaveas, Ann Inst H Poincaré Anal Non Linéaire, 26(5):1871–1895, 2009. We prove the existence and uniqueness of solutions for this model, as well as a convergence result for a family of numerical schemes. The advantage of this model is that numerical simulations can be easily done especially to track the blow-up phenomenon.  相似文献   

6.
We provide a semilocal convergence analysis for a certain class of secant-like methods considered also in Argyros (J Math Anal Appl 298:374–397, 2004, 2007), Potra (Libertas Mathematica 5:71–84, 1985), in order to approximate a locally unique solution of an equation in a Banach space. Using a combination of Lipschitz and center-Lipschitz conditions for the computation of the upper bounds on the inverses of the linear operators involved, instead of only Lipschitz conditions (Potra, Libertas Mathematica 5:71–84, 1985), we provide an analysis with the following advantages over the work in Potra (Libertas Mathematica 5:71–84, 1985) which improved the works in Bosarge and Falb (J Optim Theory Appl 4:156–166, 1969, Numer Math 14:264–286, 1970), Dennis (SIAM J Numer Anal 6(3):493–507, 1969, 1971), Kornstaedt (1975), Larsonen (Ann Acad Sci Fenn, A 450:1–10, 1969), Potra (L’Analyse Numérique et la Théorie de l’Approximation 8(2):203–214, 1979, Aplikace Mathematiky 26:111–120, 1981, 1982, Libertas Mathematica 5:71–84, 1985), Potra and Pták (Math Scand 46:236–250, 1980, Numer Func Anal Optim 2(1):107–120, 1980), Schmidt (Period Math Hung 9(3):241–247, 1978), Schmidt and Schwetlick (Computing 3:215–226, 1968), Traub (1964), Wolfe (Numer Math 31:153–174, 1978): larger convergence domain; weaker sufficient convergence conditions, finer error bounds on the distances involved, and a more precise information on the location of the solution. Numerical examples further validating the results are also provided.  相似文献   

7.
In this paper, we establish the local well-posedness for the quasi-geostrophic equations and obtain a blow-up criterion of smooth solutions in the framework of Triebel-Lizorkin-Lorentz spaces by adapting a method in Chen-Miao-Zhang (Arch. Rational Mech. Anal. 195: 2010, 561–578). Our new function spaces contain the classical Triebel-Lizorkin spaces and Sobolev spaces, and thus the corresponding results generalize several known ones, for instance, Chae (Nonlinearity 16: 2003, 479–495) and Castro et al. (Nonlinearity 22: 2009, 1791–1815). The main ingredients of our proofs are Littlewood–Paley decomposition and the paradifferential calculus.  相似文献   

8.
In Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006), a family of univariate short support Riesz wavelets was constructed from uniform B-splines. A bivariate spline Riesz wavelet basis from the Loop scheme was derived in Han and Shen (J. Fourier Anal. Appl. 11:615–637, 2005). Motivated by these two papers, we develop in this article a general theory and a construction method to derive small support Riesz wavelets in low dimensions from refinable functions. In particular, we obtain small support spline Riesz wavelets from bivariate and trivariate box splines. Small support Riesz wavelets are desirable for developing efficient algorithms in various applications. For example, the short support Riesz wavelets from Han and Shen (SIAM J. Math. Anal. 38:530–556, 2006) were used in a surface fitting algorithm of Johnson et al. (J. Approx. Theory 159:197–223, 2009), and the Riesz wavelet basis from the Loop scheme was used in a very efficient geometric mesh compression algorithm in Khodakovsky et al. (Proceedings of SIGGRAPH, 2000).  相似文献   

9.
This work is concerned with a system of nonlinear viscoelastic wave equations with nonlinear damping and source terms acting in both equations. We will prove that the energy associated to the system is unbounded. In fact, it will be proved that the energy will grow up as an exponential function as time goes to infinity, provided that the initial data are large enough. The key ingredient in the proof is a method used in Vitillaro (Arch Ration Mech Anal 149:155–182, 1999) and developed in Said-Houari (Diff Integr Equ 23(1–2):79–92, 2010) for a system of wave equations, with necessary modification imposed by the nature of our problem.  相似文献   

10.
We introduce a new iterative method in order to approximate a locally unique solution of variational inclusions in Banach spaces. The method uses only divided differences operators of order one. An existence–convergence theorem and a radius of convergence are given under some conditions on divided difference operator and Lipschitz-like continuity property of set-valued mappings. Our method extends the recent work related to the resolution of nonlinear equation in Argyros (J Math Anal Appl 332:97–108, 2007) and has the following advantages: faster convergence to the solution than all the previous known ones in Argyros and Hilout (Appl Math Comput, 2008 in press), Hilout (J Math Anal Appl 339:53–761, 2008, Positivity 10:673–700, 2006), and we do not need to evaluate any Fréchet derivative. We provide also an improvement of the ratio of our algorithm under some center-conditions and less computational cost. Numerical examples are also provided.   相似文献   

11.
This work is concerned with a system of two wave equations with nonlinear damping and source terms acting in both equations. Under some restrictions on the nonlinearity of the damping and the source terms, we show that our problem has a unique local solution. Also, we prove that, for some restrictions on the initial data, the rate of decay of the total energy is exponential or polynomial depending on the exponents of the damping terms in both equations.  相似文献   

12.
In Refs. [J. Math. Anal. Appl. 258:287–308, [2001]; J. Math. Anal. Appl. 256:229–241, [2001]], Yang and Li presented a characterization of preinvex functions and semistrictly preinvex functions under a certain set of conditions. In this note, we show that the same results or even more general ones can be obtained under weaker assumptions; we also give a characterization of strictly preinvex functions under mild conditions. This research was supported by the National Natural Science Foundation of China under Grants 70671064 and 60673177, and the Education Department Foundation of Zhejiang Province Grant 20070306. The authors thank Professor F. Giannessi for valuable comments on the original version of this paper.  相似文献   

13.
We mainly investigate some properties of quasiconformal mappings between smooth 2-dimensional surfaces with boundary in the Euclidean space, satisfying certain partial differential equations (inequalities) concerning Laplacian, and in particular satisfying Laplace equation and show that these mappings are Lipschitz. Conformal parametrization of such surfaces and the method developed in our paper (Kalaj and Mateljević, J Anal Math 100:117–132, 2006) have important role in this paper.  相似文献   

14.
In recent years, a rapidly growing literature has focussed on the construction of wavelet systems to analyze functions defined on the sphere. Our purpose in this paper is to generalize these constructions to situations where sections of line bundles, rather than ordinary scalar-valued functions, are considered. In particular, we propose needlet-type spin wavelets as an extension of the needlet approach recently introduced by Narcowich et al. in SIAM J. Math. Anal. 38, 574–594 (2006) and J. Funct. Anal. 238, 530–564 (2006) and then considered for more general manifolds by Geller and Mayeli in Math. Z. 262, 895–927 (2009), Math. Z. 263, 235–264 (2009), and Indiana Univ. Math. J. (2009). We discuss localization properties in the real and harmonic domains, and investigate stochastic properties for the analysis of spin random fields. Our results are strongly motivated by cosmological applications, in particular in connection to the analysis of Cosmic Microwave Background polarization data.  相似文献   

15.
In this paper we construct a new class of bilinear pseudodifferential operators which contains both the Coifman-Meyer class as well as the non-translation invariant class closely related both to the bilinear Hilbert transform and previously studied in Bényi et al. (J. Geom. Anal. 16(3):431–453, 2006), Bényi et al. (J. Anal. Math., 2009), Bernicot (Anal. PDE 1:1–27, 2008) as well as the bilinear Marcinkiewicz class studied in Grafakos and Kalton (Stud. Math. 146(2):115–156, 2001). We prove boundedness on Sobolev spaces for these operators as well as establish a symbolic calculus that exhibits the nice behavior of our new class under transposition and composition with linear operators.  相似文献   

16.
The purpose of this paper is to consider a shrinking projection method of finding the common element of the set of common fixed points for a finite family of a ξ-strict pseudo-contraction, the set of solutions of a systems of equilibrium problems and the set of solutions of variational inclusions. Then, we prove strong convergence theorems of the iterative sequence generated by the shrinking projection method under some suitable conditions in a real Hilbert space. Our results improve and extend recent results announced by Peng, Wang, Shyu and Yao (J Inequal Appl, 2008:15, Article ID 720371, 2008), Takahashi, Takeuchi and Kubota (J Math Anal Appl 341:276–286, 2008), Takahashi and Takahashi (Nonlinear Anal 69:1025–1033, 2008) and many others.  相似文献   

17.
In this paper we analyze the hydrodynamic equations for Ginzburg–Landau vortices as derived by E (Phys. Rev. B. 50(3):1126–1135, 1994). In particular, we are interested in the mean field model describing the evolution of two patches of vortices with equal and opposite degrees. Many results are already available for the case of a single density of vortices with uniform degree. This model does not take into account the vortex annihilation, hence it can also be seen as a particular instance of the signed measures system obtained in Ambrosio et al. (Ann. Inst. H. Poincaré Anal. Non Linéaire 28(2):217–246, 2011) and related to the Chapman et al. (Eur. J. Appl. Math. 7(2):97–111, 1996) formulation. We establish global existence of L p solutions, exploiting some optimal transport techniques introduced in this context in Ambrosio and Serfaty (Commun. Pure Appl. Math. LXI(11):1495–1539, 2008). We prove uniqueness for L solutions, as expected by analogy with the incompressible Euler equations in fluidodynamics. We also consider the corresponding Dirichlet problem in a bounded domain. Moreover, we show some simple examples of 1-dimensional dynamic.  相似文献   

18.
In this paper we investigate the Lipschitz-like property of the solution mapping of parametric variational inequalities over perturbed polyhedral convex sets. By establishing some lower and upper estimates for the coderivatives of the solution mapping, among other things, we prove that the solution mapping could not be Lipschitz-like around points where the positive linear independence condition is invalid. Our analysis is based heavily on the Mordukhovich criterion (Mordukhovich in Variational Analysis and Generalized Differentiation. vol. I: Basic Theory, vol. II: Applications. Springer, Berlin, 2006) of the Lipschitz-like property for set-valued mappings between Banach spaces and recent advances in variational analysis. The obtained result complements the corresponding ones of Nam (Nonlinear Anal 73:2271–2282, 2010) and Qui (Nonlinear Anal 74:1674–1689, 2011).  相似文献   

19.
In this paper, we investigate asymptotic behavior for the solution of the Petrovsky equation with locally distributed damping. Without growth condition on the damping at the origin, we extend the energy decay result in Martinez (Rev. Math. Complut. Madr. 12(1):251–283, 1999) for the single wave equation to the Petrovsky equation. The explicit energy decay rate is established by using piecewise multiplier techniques and weighted nonlinear integral inequalities.  相似文献   

20.
The purpose of this paper is to establish strong lower energy estimates for strong solutions of nonlinearly damped Timoshenko beams, Petrowsky equations in two and three dimensions and wave-like equations for bounded one-dimensional domains or annulus domains in two or three dimensions. We also establish weak lower velocity estimates for strong solutions of the nonlinearly damped Petrowsky equation in two and three dimensions. The feedbacks in consideration have arbitrary growth close to the origin. These results improve the strong lower energy decay rates obtained in our previous papers (Alabau-Boussouira in J Differ Equ 249:1145–1178, 2010; J Differ Equ 248:1473–1517, 2010) for strong solutions of the nonlinearly locally damped wave equation and extend to systems and to Petrowsky equation the method of Alabau-Boussouira (J Differ Equ 249:1145–1178, 2010; J Differ Equ 248:1473–1517, 2010). These results are the first ones for Timoshenko beams and Petrowsky equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号