首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing concerns related to antibiotic residues in environmental water have encouraged the development of rapid, sensitive, and accurate analytical methods. Single-drop microextraction has been recognized as an efficient approach for the isolation and preconcentration of several analytes from a complex sample matrix. Thus, single-drop microextraction techniques are cost-effective and less harmful to the environment, subscribing to green analytical chemistry principles. Herein, an overview and the current advances in single-drop microextraction for the determination of antibiotics in environmental water are presented were included. In particular, two main approaches used to perform single-drop microextraction (direct immersion-single-drop microextraction and headspace-single-drop microextraction) are reviewed. Furthermore, the impressive analytical features and future perspectives of single-drop microextraction are discussed in this review.  相似文献   

2.
The miniaturization and improvement of sample preparation is a challenge that has been fulfilled up to a point in many fields of analytical chemistry. Particularly, the hyphenation of microextraction with advanced analytical techniques has allowed the monitoring of target analytes in a vast variety of environmental samples. Several benefits can be obtained when miniaturized techniques such as solid-phase microextraction (SPME) or liquid-phase microextraction (LPME) are applied, specifically, their easiness, rapidity and capability to separate and pre-concentrate target analytes with a negligible consumption of organic solvents. In spite of the great acceptance that these green sample preparation techniques have in environmental research, their full implementation has not been achieved or even attempted in some relevant environmental matrices.  相似文献   

3.
4.
Simplicity, effectiveness, swiftness, and environmental friendliness – these are the typical requirements for the state of the art development of green analytical techniques. Liquid phase microextraction (LPME) stands for a family of elegant sample pretreatment and analyte preconcentration techniques preserving these principles in numerous applications. By using only fractions of solvent and sample compared to classical liquid–liquid extraction, the extraction kinetics, the preconcentration factor, and the cost efficiency can be increased. Moreover, significant improvements can be made by automation, which is still a hot topic in analytical chemistry. This review surveys comprehensively and in two parts the developments of automation of non-dispersive LPME methodologies performed in static and dynamic modes. Their advantages and limitations and the reported analytical performances are discussed and put into perspective with the corresponding manual procedures. The automation strategies, techniques, and their operation advantages as well as their potentials are further described and discussed.  相似文献   

5.
Carasek E  Wick Tonjes J  Scharf M 《Talanta》2002,56(1):185-191
The need for highly reliable methods for the determination of trace elements has been recognised in analytical chemistry and environmental science. A method for the trace analysis of Pb and Cd in natural waters is described. In a preconcentration step, 500 ml of an aqueous sample containing lead and cadmium were extracted into 3.5 ml of a solution containing a complexing agent (dithizone) in xylene. Subsequently, the dithizonate complexes were back-extracted into 600 mul of nitric acid solution for direct determination by flame atomic absorption spectrometry. Important microextraction parameters were optimised using spiked deionised water. The 3sigma detection limits, relative standard deviations and linear calibration graphs were, respectively, 0.39 mugl(-1), 6.3% and 1.0-20.0 mugl(-1) for lead and 8.2 ngl(-1), 4.0% and 0.05-1.0 mugl(-1) for cadmium for solvent microextraction times of 4 min and microvolume back-extraction times of 1 min. The preconcentration factors were 543- and 331-fold for lead and cadmium, respectively.  相似文献   

6.
Liquid–liquid extraction (LLE) is widely used as a pre-treatment technique for separation and preconcentration of both organic and inorganic analytes from aqueous samples. Nevertheless, it has several drawbacks, such as emulsion formation or the use of large volumes of solvents, which makes LLE expensive and labour intensive. Therefore, miniaturization of conventional liquid–liquid extraction is needed. The search for alternatives to the conventional LLE using negligible volumes of extractant and the minimum number of steps has driven the development of three new miniaturized methodologies, i.e. single-drop microextraction (SDME), hollow fibre liquid-phase microextraction (HF-LPME) and dispersive liquid–liquid microextraction (DLLME). The aim of this paper is to provide an overview of these novel preconcentration approaches and their potential use in analytical labs involved in inorganic (ultra)trace analysis and speciation. Relevant applications to the determination of metal ions, metalloids, organometals and non-metals are included.  相似文献   

7.
黄林芳  何蔓  陈贝贝  胡斌 《色谱》2014,32(10):1066-1078
毛细管电泳(CE)具有分析速度快、分离效率高、样品消耗少、成本低廉等优点,已被应用于无机离子、有机小分子、蛋白质、核酸及细胞等的分析中。CE中最常用的检测方式是紫外检测(UV),但由于常规进样样品体积小、检测光程短,CE-UV的灵敏度往往不能满足复杂样品中痕量物质直接分析的要求。CE中的在柱富集技术包括堆积、动态pH界面、吹扫和瞬间等速电泳等,可在很大程度上提高CE-UV的检测灵敏度;另外,固相和液相微萃取技术及其与在柱富集技术相结合应用在CE中也能净化样品基质,进一步提高富集倍数,改善分析灵敏度,从而拓宽了CE-UV在复杂样品分析中的应用范围。  相似文献   

8.
Deep eutectic solvents are considered as new and green solvents that can be widely used in analytical chemistry such as microextraction. In the present work, a new dl‐ menthol‐based hydrophobic deep eutectic solvent was synthesized and used as extraction solvents in an air‐assisted dispersive liquid–liquid microextraction method for preconcentration and extraction of benzophenone‐type UV filters from aqueous samples followed by high‐performance liquid chromatography with diode array detection. In an experiment, the deep eutectic solvent formed by dl‐ menthol and decanoic acid was added to an aqueous solution containing the UV filters, and then the mixture was sucked up and injected five times by using a glass syringe, and a cloudy state was achieved. After extraction, the solution was centrifuged and the upper phase was subjected to high‐performance liquid chromatography for analysis. Various parameters such as the type and volume of the deep eutectic solvent, number of pulling, and pushing cycles, solution pH and salt concentration were investigated and optimized. Under the optimum conditions, the developed method exhibited low limits of detection and limits of quantitation, good linearity, and precision. Finally, the proposed method was successfully applied to determine the benzophenone‐type filters in environmental water samples with relative recoveries of 88.8–105.9%.  相似文献   

9.
Chromatomembrane cells are new devices for gaseous/liquid and liquid/liquid extractions consisting of porous hydrophobic material (PTFE) with two types of pores, i.e., micropores and macropores. Their application benefits from established procedures of preconcentration and continuous extraction being used at the present to automate sample preparation in analytical chemistry. A method is reported to separate traces of ammonia from air by means of a chromatomembrane cell with subsequent potentiometric determination. The measuring system responds proportionally to both gas phase concentration of ammonia and preconcentration time.  相似文献   

10.
A new separation procedure for determination of palladium using dispersive liquid–liquid microextraction with dicyclohexano-18-crown-6 as complexing reagent was developed. In this method, potassium–dicyclohexano-18-crown-6 was used as a hydrophobic complex for the microextraction of palladium as PdCl4 2? complex ion. The main factors affecting DLLME efficiency, such as type and volume of extractant and disperser solvent, concentration of chelating reagent, concentration of KCl and pH were optimized. Under the optimal conditions, the limit of detection for palladium was 16.0 ng mL?1 with enrichment factor of 138. The present method was applied to the determination of palladium in water samples with satisfactory analytical results. The method was simple, rapid, cost efficient and sensitive for the extraction and preconcentration of palladium.  相似文献   

11.
This review provides a comprehensive evaluation of solidified floating organic drop microextraction (SFODME) procedures for metal ions preconcentration and their contributions to green chemistry. In this article we focused on the modifications that have been performed in the recent years to improve this environmentally friendly procedure. Among the most important of these modifications are the inclusion of ultrasonic energy, vortex and air agitation to enhance the dispersion process. The article also discussed new challenges in the procedure by using more ecofriendly solvents as extractants such as ionic liquids, deep eutectic. and supramolecular solvents. The coupling of SFODME with solid phase extraction increases selectivity and efficiency of the preconcentration procedure.  相似文献   

12.
Miller KE  Synovec RE 《Talanta》2000,51(5):921-933
The use of drops in chemical analysis methodology and instrumentation has a deeply rooted past in the area of electrochemistry through the evolution of the dropping mercury electrode (DME). This history has also been deeply rooted in the field of surface science due to the inextricable connection between surface tension forces and drop formation. While the use of the DME is well established, the evolution of drop-based analytical measurements using aqueous and/or organic drops is a rapidly emerging and diverse field, encompassing several interdisciplinary areas of science: surface science and interfacial surface tension phenomena, spectroscopic detection, analytical instrumentation hyphenation, liquid membrane separation, reagent chemistry, electrochemistry, and so on. This review of 112 references covers various aspects of drop-based analytical measurements involving aqueous and/or organic drops. The review is divided into four sections, although the classification of a particular reference into a given section can sometimes be argued. The first section considers the use of drops as a detector component. The second section deals with fundamental studies that probe drop-related chemical and physical phenomena that are relevant to current and future developments in analytical chemistry. The next section covers recent advances in the area of microfluidic sample handling and instrumentation hyphenation. The final section reports upon emerging technologies aimed toward drop-based chemical analyzers that incorporate a number of steps in a chemical analysis: microextraction, preconcentration, reagent chemistry, microfluidic handling, and detection.  相似文献   

13.
Chemometric experimental design in microextraction plays a crucial role in sustaining the highest quality of analytical data. Making use of the main significant points of chemometric experimental design and microextraction in analytical chemistry we formed the core of this review article. A step-by-step chemometric approach is provided to optimize and validate microextraction-based analytical processes. Significant applications are reported with developments related to microextraction combined with chemometric optimization processes. As it appears from the numerous examples provided in this review, a great number of researchers give credit to the combination of microextraction and chemometrics recognizing that it significantly streamlines sample processing. Moreover, the combination of microextraction with chemometrics addresses problems relating to improvement in detectability and method validation. A worked example on the microextraction of polychlorinated biphenyls is incorporated into the relevant sections of this article and comprehensively provides in a rational and integrated way guidance to people dealing with this subject.  相似文献   

14.
The supramolecular solvent system consists of tetrahydrofuran (THF) and 1-decanol, that was used as an extraction solvent for a microextraction procedure for the preconcentration and separation of Co(II). The proposed supramolecular-based procedure was combined with microsampling flame atomic absorption spectrometry for the determination of cobalt at trace levels in water samples. N-Benzoyl-N,N-diisobutylthiourea was used to chelate Co(II) in an aqueous solution. Quantitative extraction efficiency was obtained at pH 6.5. The effects of analytical parameters including pH, amount of ligand, type, ratio and volume of supramolecular solvent, sample volume and interfering ions were investigated for optimisation of the procedure. The proposed supramolecular solvent-based microextraction procedure (Ss-ME) exhibits a limit of detection (LOD) of 1.29 µg L?1 and a limit of quantification (LOQ) of 3.88 µg L?1. The procedure was validated by addition/recovery tests and by applying TMDA 64.2 and TMDA 53.3 water certified reference materials. The microextraction method was successfully applied for the preconcentration and determination of cobalt in water samples.  相似文献   

15.

Single-drop microextraction (SDME) and hollow-fiber membrane microextraction (HFME) belong to methods of the liquid-phase microextraction preconcentration of organic compounds. These methods are characterized by the low consumption of organic solvents, high preconcentration factors, simplicity, low cost, ease of combination with various chromatographic methods; processes of preconcentration and sample injection are combined in a single device. Since the emergence of SDME (1996) and HFME (1999), a large number of versions have been developed that differ in the preconcentration technique, nature of the extractants used, and combinations with methods for the subsequent determination of the preconcentrated substances. The popularity of these methods among the analysts is evidenced by many reviews that we have summarized in this publication.

  相似文献   

16.
Extraction techniques, which focus on selectivity and sensitivity enhancement by isolation and preconcentration of target analytes, are essential in many analytical methods. Because many extraction techniques occur under diffusion-controlled conditions, stirring of the sample solution is required to accelerate the extraction by favoring diffusion of the analytes from the bulk solution to the extractant phase. This stirring may be performed by use of an external device or by integrating extraction and stirring in the same device. This review focuses on the latter techniques, which are promising methods for sample treatment. First, stir-bar-sorptive extraction, the most widely used method, is considered, paying special attention to the development of new coatings. Finally, a general overview of novel integrated techniques in both solid-phase and liquid-phase microextraction is presented; their main characteristics and marked trends are reported.  相似文献   

17.
Pyridylazo and thiazolylazo reagents are synthetic dyes widely used in analytical chemistry. These reagents are also very attractive for use in preconcentration systems. This paper covers the application of pyridylazo and thiazolylazo reagents in flow injection systems for the determination of metals. The article discusses flow injection preconcentration systems with solid-phase extraction, precipitation and cloud point extraction. The use of pyridylazo and thiazolylazo reagents in flow injection detection systems is also presented. The relative advantages and drawbacks of these systems are discussed. The application of pyridylazo and thiazolylazo reagents in new systems is presented in the concluding part of this review article.  相似文献   

18.
CE is gaining great popularity as a well‐established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off‐line preconcentration (sample preparation) and on‐line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid–liquid microextraction, supercritical fluid extraction, matrix solid‐phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on‐line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.  相似文献   

19.
Sample pretreatment techniques or preconcentration constitute a very important step before the analysis of environmental, clinical, pharmaceutical, and other complex samples. Thanks to extraction techniques it is possible to achieve higher method sensitivities and selectivities. Miniaturization microextraction methods make them more environmentally friendly and only small amounts of samples are required. In the past 30 years, a number of microextraction methods have been developed and used and are documented in thousands of articles. Many reviews have been written focusing on their use in specified professional fields or on the latest trends. Unfortunately, no uniform nomenclature has been introduced for these methods. Therefore, this review attempts to classify all the essential microextraction techniques and describes their advantages, disadvantages, and the latest innovations. The methods are divided into two main groups: single drop and sorbent‐based techniques according to the type of extraction phase.  相似文献   

20.
For the first time, the application of polytetrafluoroethylene powder as an extractant phase collector or holder in liquid‐phase microextraction has been developed. For this purpose, the analytical performances of two different ways of applying polytetrafluoroethylene powder in microextraction methods including polytetrafluoroethylene physisorption‐assisted emulsification microextraction and dispersive liquid‐phase microextraction via polytetrafluoroethylene extractant phase holders have been compared for analysis of aliphatic hydrocarbons in aqueous phases. Under the same conditions, the former showed better extraction efficiencies over the latter and as a result, it was applied as preconcentration and cleanup step in the analysis of aliphatic hydrocarbons in sediment samples followed by gas chromatography analysis. The linearity of the polytetrafluoroethylene physisorption‐assisted emulsification microextraction method was obtained over a range of 3.7 and 2000 ng/g (R 2 > 0.993). The relative standard deviations were less than 6.5% (n = 3). The limits of detection and quantification obtained by this method were 1.1–9.0 and 3.7–30 ng/g, respectively, indicating that satisfactory results were achieved by the procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号