首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vial liquid-phase microextraction (LPME) combined with capillary electrophoresis (CE) was evaluated for the determination of the acidic drugs ibuprofen, naproxen, and ketoprofen present in water samples and in human urine. The 2.5 mL samples containing the drugs were filled into conventional vials and subsequently acidified by 250 microL of 1-10 M HCl. Porous hollow fibers of polypropylene containing 25 microL of an aqueous solution of 0.01-0.1 M NaOH (acceptor solution) and with dihexyl ether immobilized in the pores of the wall were placed into each of the samples. The acidic drugs were extracted from the acidified sample solutions into the dihexyl ether phase, in the pores of the hollow fiber, and further into the alkaline acceptor solution forced by high partition coefficients. The drugs were extracted almost quantitatively (75-100% extraction efficiency) from the 2.5 mL samples and into the 25 microL acceptor solutions, providing 75-100 times preconcentration. The acceptor solutions were collected for automated CE analysis, which enabled the drugs to be detected down to the 1 ng/mL level.  相似文献   

2.
Basic studies on carrier-mediated transport as a mechanism to extract polar drugs by hollow fibre-based liquid-phase microextraction are presented for the first time. Hydrophilic alkaline drugs with log P (octanol/water partition coefficient) values less than 1 were selected as model substances. Sodium octanoate served as carrier and was added to the sample solution at pH 7 to form hydrophobic ion-pair complexes with the analytes. The ion-pair complexes were extracted into octanol as liquid membrane immobilised in the pores of the hollow fibre. Further extraction into an aqueous acceptor phase inside the lumen of the hollow fibre was facilitated by counter transport of protons from the acceptor solution to the sample solution. Protons from the acceptor solution released the analytes at the liquid membrane-acceptor interface and neutralized the carrier. The acceptor phase was analysed by capillary electrophoresis. The studies show that high extraction recoveries of ionic hydrophilic drugs can be obtained at a sample-acceptor volume ratio of 10. Linear calibration graphs and clean electropherograms indicate that carrier-mediated transport is a promising technique in microextraction of polar drugs from biological matrices.  相似文献   

3.
Recently, we introduced an inexpensive and disposable hollow fiber-based device for liquid-phase microextraction (LPME) where ionic analytes typically were extracted and preconcentrated from 1-4 mL aqueous samples (such as plasma and urine) through an organic solvent immobilized in the pores of a polypropylene hollow fiber and into a 10-25 microL volume of acceptor phase present inside the lumen of the hollow fiber. Subsequently, the acceptor phase was directly subjected to the final analysis by a chromatographic or electrophoretic method. In the present work, attention was focused on LPME of the basic drugs amphetamine, pethidine, promethazine, methadone and haloperidol characterized by substantial differences in the degree of protein binding. Drug-protein interactions in plasma resulted in reduced recoveries and substantially increased extraction times compared with extraction of the drugs from a pure water matrix. However, by addition of 5-50% methanol to the plasma samples, recoveries were comparable with LPME from water samples and ranged between 75 and 100%. The addition of methanol was found not to speed up the LPME process and extractions from plasma were performed in 45 min to reach equilibrium. Because approximately 55-70% of the final analyte concentrations were achieved within the initial 10 min of the LPME process, validation was accomplished after 10 and 45 min of LPME. In general, the results with 10 and 45 min were almost comparable, with precision data in the range 1.2-11.1% (RSD) and with linearity in the concentration range 20-1000 ng mL(-1) (r = 0.999). In conclusion, excellent LPME results may be achieved in a short time under non-equilibrium conditions with a minor loss of sensitivity. In cases of drug-protein interactions, methanol may be added to ensure a high extraction recovery.  相似文献   

4.
A procedure for the determination of traces of mercury by liquid-phase microextraction based on solidification of a floating organic droplet for separation and electrothermal atomic absorption spectrometry for final measurement has been developed. For this purpose, 50 μL of pre-heated (50 °C) undecanoic acid (UA), are added to 25 mL of aqueous sample solution at pH 5. The mixture, maintained at 50 °C, is stirred for 10 min using a high stirring rate in order to fragment the UA drop into droplets, thus favoring the extraction process. Next, the vial is immersed in an ice bath, which results in the solidification of the UA drop that is easily separated. Injection into the atomizer is carried out after gentle heating. The pyrolytic atomizers are coated with electrolytically reduced palladium that acts as an effective chemical modifier for more than 500 firings. Under the optimized conditions, the detection limit was 70 ng L−1 mercury with an enrichment factor of 430. The relative standard deviation of the measurements was in the 2.1–3.5% range. Recovery studies applied to the determination of mercuric ions in bottled and tap water samples were in the 92–104% range.  相似文献   

5.
Microextraction of organic or inorganic analytes using solidified floating drops of organic solvents is a fairly new method that is simple and rapid, and requires only small quantities of solvents and reagents. This review (with 109 references) covers published work up to Sep. 2012, and describes how the method was combined with analytical techniques such as GC, HPLC, ICP-OES and electrothermal atomic absorption spectrometry. We discuss basic principles and the main parameters that affect the extraction efficiency, and give specific applications of the technique.
Figure
Schematic diagram of liquid-phase microextraction based on solidified floating drops of organic solvents  相似文献   

6.
The detection and quantification of biomarkers have gained more attention in the medical discipline to evaluating disease progression to manage medical treatment. Biomarkers range from gases to biological macromolecules. Because of the nanomolar range levels of typical biomarkers in plasma, blood, urine, exhalation samples, and other biological fluids as well as complex matrix of biological media, adequate sample preparation methods should be used for quantification of biomarkers. Biomarkers are discussed here generally classified mainly into two subgroups which arisen from disease or exposure compounds. The analytical method is critical for the validity/reliability of a biomarker. Accuracy, precision, reproducibility, recovery, sensitivity, and specificity all have high influence to the consistency with the limit and reference values concerned. In this paper, developments in well-established liquid-phase microextraction techniques for the clinical analysis of biological samples will be reviewed and discussed. This article presents an overview of microextraction methods for biological samples, focusing especially on biomarkers.  相似文献   

7.
We review the state of the art in developing liquid-phase microextraction (LPME) systems, including supported liquid membranes, dialysis membranes and hollow fibers for capillary electrophoresis (CE) determination of analytes in complex matrices. Rather than simply cover an exhaustive compilation of available references, we discuss the analytical potential of LPME-CE combinations based on commercially-available and laboratory-made CE equipment. Although we discuss on-batch, on-capillary and coupled combinations, we especially emphasize the interfaces and the approaches used to couple LPME to CE on-line or in-line.  相似文献   

8.
Liquid-phase microextraction (LPME) has been investigated for trace analysis in the present work in conjunction with fibre-optic-based micro-spectrophotometry which accommodates sample volume of 1 μL placed between the two ends of optical fibres. Methods have been evolved for the determination of (i) 1-100 μM and 0.5-20 μM of thiols by single drop microextraction (SDME) and LPME in 25 μL of the organic solvent, respectively, involving their reaction with the Ellman reagent and ion pair microextraction of thiolate ion formed; (ii) 70 μg to 7 mg L−1 of chlorine/chlorine dioxide by headspace in-drop reaction with alternative reagents, viz., mixed phenylhydrazine-4-sulphonic acid and N-(1-naphthyl)ethylenediamine dihydrochloride, o-dianisidine, o-tolidine, and N,N-diethyl-p-phenylenediamine; (iii) 0.2-4 mg L−1 of ammonia by reaction with 2,4-dinitro-1-fluorobenzene to give 2,4-dinitroaniline which was diazotized and coupled with 1-naphthylamine, the resulting dye was subjected to preconcentration by solid-phase extraction and LPME; and (iv) 25-750 μg L−1 of iodide/total iodine by oxidation of iodide by 2-iodosobenzoate, microextraction of iodine in organic solvent, and re-extraction into aqueous starch-iodide reagent drop held in the organic phase. LPME using 25-30 μL of organic solvent was found to produce more sensitive results than SDME. The cuvetteless spectrophotometry as used in combination with sample handling techniques produced limits of detection of analytes which were better than obtained by previously reported spectrophotometry.  相似文献   

9.
Summary The method of multielement preconcentration of impurities from high-purity lead utilizing an extraction Chromatographie separation in tri-n-octylamine-HCl system is developed. Unlike a well-known procedure based on precipitation of lead nitrate this method is applicable to very small samples. Being used in combination with the precipitation procedure mentioned, this method provides a considerable increase in the effectiveness of the latter.  相似文献   

10.
A newly developed disposable device for liquid-phase microextraction (LPME) was evaluated for the capillary electrophoresis (CE) of the antidepressant drug citalopram (CIT) and its main metabolite N-desmethylcitalopram (DCIT) in human plasma. CIT and DCIT were extracted from 1 ml plasma samples through hexyl ether immobilised in the pores of a porous polypropylene hollow fibre and into 25 microl of 20 mM phosphate buffer (pH 2.75) present inside the hollow fibre (acceptor phase). Prior to extraction, the samples were made strongly alkaline in order to promote LPME of the basic drugs. Owing to the high ratio between the volumes of sample and acceptor phase, and owing to high partition coefficients, CIT and DCIT were enriched by a factor of 25 to 30. In addition, sample clean-up occurred during LPME since salts, proteins and the majority of endogenic substances were unable to penetrate the hexyl ether layer. Since the extracts were aqueous, they were injected directly into the CE instrument. Limits of quantification (S/N= 10) for CIT and DCIT in plasma were 16.5 ng/ml and 18 ng/ml respectively, while the limits of detection (S/N=3) were 5 ng/ml and 5.5 ng/ml respectively. This enabled CIT (and DCIT) to be analysed within the therapeutic range by LPME-CE and detection limits were comparable with previously reported HPLC methods.  相似文献   

11.
Sol-gel technology provides a simple and reliable method for solid-phase microextraction (SPME) fiber preparation through in situ creation of surface-bonded organic-inorganic hybrid coatings characterized by enhanced thermal stability and solvent-resistance properties that are important for the coupling of SPME with GC and HPLC, respectively. The sol-gel coating technology has led to the development of an extensive array of sol-gel sorbent coatings for SPME. In this article, sol-gel microextraction coatings are reviewed, with particular attention on their synthesis, characterization, and applications in conjunction with GC and HPLC analyses. In addition, the development of sol-gel-coated stir bars, their inherent advantages, and applications are discussed. Next, the development and applications of sol-gel capillary microextraction (CME) in hyphenation with GC and HPLC is extensively reviewed. The newly emerging germania- and titania-based sol-gel microextraction phases look promising, especially in terms of pH and hot solvent stability. Finally, sol-gel monolithic beds for CME are reviewed. Such monolithic beds are in a position to greatly improve the extracting capabilities and enhanced sensitivity in CME.  相似文献   

12.
A method based on the retention of inorganic ions by water-soluble polymeric reagents (liquid-phase polymer-based retention) in a membrane filtration cell is suggested for the separation and preconcentration of various elements. The preseparated elements remain in the aqueous solution, which is convenient for most instrumental methods of completing the analysis. The water-soluble poly(ethyleneimine) and its thiourea and methylated derivatives are shwon to be useful for retention of different inorganic ions and their separation from elements not bound to the polymer reagent.  相似文献   

13.
A liquid-phase microextraction (LPME) method using a micropipette with disposable tips was demonstrated for coupling to atmospheric pressure MALDI-MS (AP-MALDI/MS) as a concentrating probe for rapid analysis and quantitative determination of nortriptyline drug from biological matrices including human urine and human plasma. This technique was named as micropipette extraction (MPE). The best optimized parameters of MPE coupled to AP-MALDI/MS experiments were extraction solvent, toluene; extraction time, 5 min; sample agitation rate, 480 rpm; sample pH, 7; salt concentration, 30%; hole size of micropipette tips, 0.61 mm (id); and matrix concentration, 1000 ppm using alpha-cyano-4-hydroxycinnamic acid (CHCA) as a matrix. Three detection modes of AP-MALDI/MS analysis including full scan, selective ion monitor (SIM), and selective reaction monitor (SRM) of MS/MS were also compared for the MPE performance. The results clearly demonstrated that the MS/MS method provides a wider linear range and lower LODs but poor RSDs than the full scan and SIM methods. The LOD values for the MPE under SIM and MS/MS modes in water, urine, and plasma were 6.26, 47.5, and 94.9 nM, respectively. The enrichment factors (EFs) of this current approach were 36.5-43.0 fold in water. In addition, compared to single drop microextraction (SDME) and LPME using a dual gauge microsyringe with a hollow fiber (LPME-HF) technique, the LODs acquired by the MPE method under MS/MS modes were comparable to those of LPME-HF and SDME but it is more convenient than both methods. The advantages of this novel method are simple, easy to use, low cost, and no contamination between experiments since disposable tips were used for the micropipettes. The MPE has the potential to be widely used in the future because it only requires a simple micropipette to perform all extraction processes. We believe that this technique can be a powerful tool for MALDI/MS analysis of biological samples and clinical applications.  相似文献   

14.
An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included.  相似文献   

15.
A liquid-phase microextraction (LPME) method was employed for preconcentration of selenium as piazselenol complex in aqueous samples. The samples reacted with o-phenylenediamine in 0.1?M HCl at 90°C for 15?min, and then LPME was performed. A microdrop of carbon tetrachloride was applied as the extracting solvent. After extraction, the microdrop was introduced directly into the injection port of gas chromatography for analysis. Several important extraction parameters such as the type of organic solvent, sample and organic drop volumes, salt concentration, stirring rate, and exposure time were controlled and optimized. In the proposed LPME, the extraction was achieved by suspending a 3?µL carbon tetrachloride drop from the tip of a microsyringe immersed in 12.5?mL of aqueous solution. Under optimized conditions, a dynamic linear range was obtained in the range of 20–1000?µg?L?1. The preconcentration factor and the limit of detection of selenium in this method were 91 and 0.9?µg?L?1, respectively. The optimized procedure was successfully applied to the extraction and determination of selenium in different types of real samples. The relative standard deviations for the spiking levels of 50–100?µg?L?1 in the real samples were in the range of 3.2–6.1%, and the relative errors were located in the range of ?5.4 to 5%.  相似文献   

16.
The applicability of in-vial two-phase liquid-phase microextraction (LPME) in porous hollow polypropylene fiber was studied for the sample preparation of unconjugated anabolic steroids in urine. Four different anabolic steroids - metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol - were used as test compounds and methyltestosterone as an internal standard. A standard two-phase LPME method for use with liquid chromatography/mass spectrometry (LC/MS) was set up and the influence of different parameters, including the nature of organic solvent, extraction time, salting-out and temperature, on the LPME process was investigated. Taking advantage of the preliminary studies, a novel two-phase LPME method utilizing simultaneous in-fiber silylation was developed and validated for gas chromatographic/mass spectrometric (GC/MS) analysis of a danazol metabolite in urine. In all, LPME allowed a very straightforward, simple and selective way to prepare urine samples for steroid analysis, being most suitable for hydrophobic steroids. The LPME method with in-fiber derivatization for GC/MS analysis exhibited high sensitivity, repeatability and linearity and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine matrix without any other steps in sample pretreatment.  相似文献   

17.
18.
A drop version of the extraction preconcentration of organochlorine and aromatic impurities from water is developed. One microliter of carbon tetrachloride is used as an extractant. The distribution and preconcentration coefficients of impurities are determined. Factors affecting the stability of the extractant drop are studied. The limits for the gas-chromatographic detection of the impurities with their drop preconcentration are (2–5) × 10?5 mg/L.  相似文献   

19.
The extractability of 58 different basic drugs by 3-phase liquid-phase microextraction (LPME) was studied. Extraction recoveries were correlated to solubility data and log D data calculated with a commercial computer program. The basic drugs were extracted from 1.5 mL water samples (pH 13) through approximately 15 microL of dodecyl acetate immobilized within the pores of a porous polypropylene hollow fibre (organic phase), and into 15 microL of 10 mM HCl (acceptor solution) present inside the lumen of the hollow fibre. Compounds with a calculated solubility below 1 mg/mL at pH 2 were poorly recovered and remained principally in the organic phase. For these drugs, 2-phase LPME may be used as an alternative technique, where the aqueous acceptor phase is replaced by an organic solvent. In the solubility range 1-5 mg/mL, most drugs were effectively extracted (recovery >30%), whereas drugs belonging to the solubility range 5-150 mg/mL were all extracted with recoveries above 30% by 3-phase LPME. The hydrophilic nature of most drugs with solubilities above 150 mg/mL prevented them from entering the organic phase, and only those with log D >1.8 were effectively recovered by 3-phase LPME. For drugs with log D < 1.8 (and solubility >150 mg/mL), carrier-mediated LPME was found to be the preferred technique, where an ion-pair reagent (octanoic acid) was added to the sample. In the case of carrier-mediated LPME, the volume of sample was decreased to 100 microL to facilitate rapid extractions. Based on the present work, the extractability of new compounds may easily be predicted to speed up method development. Extractions were also accomplished from plasma samples, where interactions between proteins and the drugs may reduce the extraction recovery. However, dilution of the plasma samples with water and adjustment of pH into the alkaline region effectively suppressed drug-protein interactions for most of the drugs studied.  相似文献   

20.
Summary A procedure for concentrating microimpurities (especially W) in high-purity Mo by extraction chromatography (stationary phase trioctylammonium hydrochloride) has been developed. Extraction with 1-phenyl-3-methyl-4-benzoylpyrazol-5-one in molten naphthalenediphenyl mixture was also examined, but proved less useful. The extraction of W in the presence of macroamounts of Mo is suppressed in the extraction chromatography, allowing quantitative separation of these two elements. The electrochemical behaviour of Mo and W in each other's presence has been studied and a polarographic technique for determination of 10–6 M developed. The polarographic results for W are not affected by the presence of a 100-fold ratio of Mo. If the extraction chromatography and polarographic analysis are combined, the detection limit for W in Mo appears to be 10–5%.
Die Analyse des Molybdäns und seiner hochreinen Verbindungen. Anreicherung der Verunreinigungen
Zusammenfassung Anreicherungsverfahren für Mikrobeimengungen (in erster Linie von Wolfram) in hochreinem Molybdän mit Hilfe der Extraktions-Chromatographie (unbewegliche Phase Trioktylammoniumchlorid) und der Extraktion mit leicht schmelzenden Extraktionsmitteln (PMBP-Naphthalin-Diphenyl) wurden untersucht. Die Unterdrückung der Wolfram-Extraktion durch Makromengen Molybdän wurde bei der Trennung ausgenützt. Das elektrochemische Verhalten von Mo und W bei gemeinsamer Anwesenheit wurde untersucht und die Methodik der polarographischen Bestimmung von 10–6 M Wolfram ausgearbeitet. Die Anwesenheit eines 100fachen Überschusses an Molybdän beeinflußt die Ergebnisse für Wolfram nicht. Bei Kombination des extraktions-chromatographischen Verfahrens mit der Polarographie beträgt die Bestimmungsgrenze für Wolfram in Molybdän 10–5%.


Presented at the 8th International Microchemical Symposium, Graz, August 25–30, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号