首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Two binuclear cadmium(II) iodide compounds of the types [Cd2(L1)(I)4] (1) and [(L2)Cd(μ-I)CdI3] (2) [L1 = N,N′-(bis(pyridine-2-yl)formylidene)triethylenetetramine and L2 = tris(2-aminoethyl)amine] are synthesized and characterized. X-ray structural study shows that each cadmium(II) in 1 has a distorted square pyramidal geometry with a CdN3I2 chromophore and that L1 behaves as a binucleating bis(tridentate) ligand bridging the metal centers with iodides remaining as terminals. In 2, one cadmium(II) adopts a distorted tetrahedral geometry with a CdI4 chromophore surrounded by four iodides, while the other has a distorted trigonal bipyramidal environment with CdN4I chromophore bound by four N atoms of L2 and one bridging iodide. Weak C–H···π interactions in 1 result in an infinite 1D chain; however, such weak non-covalent interactions are absent in 2. The Schiff base complex, 1, shows high-energy intraligand 1(π–π*) fluorescence in DMF solution at room temperature, whereas compound 2 containing tripodal amine is fluorescent-inactive.  相似文献   

2.

Abstract  

Thiacalix[4]arenes are a unique family of polydentate ligands that offer a combination of four soft sulfur atoms together with four hard phenol oxygen atoms for binding to metal ions. In this study, the tetranuclear cadmium (II) complex Cd4II(tca)2·1.5CH2Cl2 (tca4− = tetra-anionic p-tert-butylthiacalix[4]arene) (1) was synthesized by reaction of a deprotonated p-tert-butylthiacalix[4]arene and various CdII salts. The structure of 1 was established by single crystal X-ray diffraction analysis. The neutral complex 1 contains a square arrangement of four cadmium (II) ions sandwiched between two tca4− ligands that have a ‘cone’ conformation similar to that of the free ligand. The absorption and emission properties of the free ligand H4tca and complex 1 have been recorded and explained by DFT calculations of the molecular orbitals and electronic transitions between them.  相似文献   

3.
The fluorimetric determination of mercury ions with o-vanillin-8-aminoquinoline (OVAQ) in aqueous solutions was investigated. Hg(II) could react with the fluorescent reagent OVAQ (λex/em = 278/314 nm) to form a nonfluorescent complex in an ethanol-water medium of pH 6.00. The linear range of the proposed method was from 2.5 to 80 μg/L, and the detection limit was 0.80 μg/L. The interferences of 24 foreign ions were also studied. The method was successfully applied to the determination of Hg(II) in sludge. The text was submitted by the authors in English.  相似文献   

4.
An on-line solid phase extraction method, linked to inductively coupled plasma optical emission spectrometry (ICP-OES), has been examined using octadecyl-bonded silica cartridge for determination of low levels of uranium and thorium in aqueous samples. 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedion forms a hydrophobic complex with cations and the resulted complex was retained on SPE. The retained complex was eluted using an acidic solution and introduced into ICP for determination. Various effective parameters and chemical variables such as sample pH, amount of ligand (as a complexing agent), sampling and eluting flow rates and concentration of the eluent were optimized. Under optimal conditions, calibration curves with dynamic linear ranges of 1–200 μg/L (r 2 = 0.9999) and 1–500 μg/L (r 2 = 0.9994) for U and Th were obtained, respectively. Detection limits based on three times of standard deviations of blank by 6 replicates were 0.69 μg/L and 0.84 μg/L for U and Th, respectively. Sample throughput was 10 samples/h. The interference effects of several metal ions on percentage of recovery of U and Th were also studied. The method was applied to the recovery and sequential determination of these actinide elements in different water samples.  相似文献   

5.
The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV). Received: 13 November 1996 / Revised: 19 December 1996 / Accepted: 24 December 1996  相似文献   

6.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results.   相似文献   

7.
A novel cadmium(II) complex with N-(2-acetic acid)salicyloyl hydrazone (C9H8N2O4, H3L) and imidazole (Im) was prepared and characterized. The crystal structures of ligand H3L and cadmium(II) complex were determined by X-ray single-crystal diffractometry. The complex consists of three binuclear neutral unattached units. One of Cd2+ is six-coordinated by the carboxylic O atom, acylic O atom, and azomethinic N atom of one ligand H3L (HL2− form), carboxylic O atom from the other ligand H3L by the μ2-bridging form and N atoms from two imidazoles, but the other five Cd2+ ions all are seven-coordinated more than an O atom from coordinated water molecule compared with six-coordinated Cd2+. HL2− acts as tridentate ligand forming two stable five-numbered rings and sharing one side in the keto form for each ligand, and the carboxyl groups of two HL2− ligands are coordinated via the μ2-bridging form. The coordination polyhedron around Cd2+ was described as a octahedron or pentagonal bipyramidal. The inter- and intramolecular hydrogen bonds resulted in a three- dimensional network and provided extrastability for the structure. The complex exhibits good fluorescence properties. The complex was also searched for the interaction with CT-DNA by electronic absorption titration and emission titration. The results show that the complex is bound to calf thymus DNA mainly by intercalation.  相似文献   

8.
A silica based sorbent with an anion complexone polymer coating, [24]ane-N6 macrocycle, was prepared. The chelation properties of this material were investigated by elemental analysis, infrared spectra and Voige’s method. The polymer-coated silica column (25– 40 μm, 100 × 4.6 mm i.d.) was employed for trace metal analyses. Oxalic acid, malonic acid, succinic acid, citric acid, phthalic acid and acetic acid were used as mobile phases. Their retention characteristics were elucidated. Oxalic acid was found to be the most effective eluent. With a mobile phase consisting of oxalic acid (25 mM) and sodium nitrate (25 mM) at pH 4.2, the separation of copper(II), cadmium(II), cobalt(II) and zinc(II) in sea water could be achieved. The identification of metal ions was performed at 510 nm using 4(2-pyridylazo)resorcinol (1 × 10–4 M) as post column reagent. The limits of detection were 5 × 10–7 M, 1 × 10–5 M, 3 × 10–5 M and 2 × 10–6 M for copper(II), cadmium(II), cobalt(II) and zinc(II) based on three times the standard deviation of the response for the lowest concentration (n = 5) in the chromatogram with a sample volume of 50 μL. For evaluation of data reliability, oyster tissue (NIST SRM 1566 a) was studied with the proposed system. Received: 9 February 1998 / Revised: 15 May 1998 / Accepted: 16 June 1998  相似文献   

9.
A new sensitive and selective chromogenic reagent, 1-azobenzene-3-(3-hydroxyl-2-pyridyl)-triazene (ABHPT), was synthesized. It has been found that ABHPT reacts with nickel(II) in a borax buffer solution (pH 10.0) to form 2: 1 red complexes with the maximum absorption at 530 nm. The apparent molar absorptivity of the complex is 2.6 × 105 L/(mol cm). Most metal ions can be tolerated in considerable amounts, whereby only zinc and mercury may interfere with the determination of nickel(II). Nevertheless, this can be easily eliminated by prior separation with sulfhydryl dextran gel. A new method for the spectrophotometric determination of trace nickel(II) was developed. Beer’s law is obeyed for 0–15 μg of nickel(II) in 25 mL of solution. The limit of quantification, limit of detection, and relative standard deviation are 0.74 ng/mL, 0.25 ng/mL, and 1.0%, respectively. The method has been applied to the determination of trace nickel(II) in biological samples with satisfactory results. The text was submitted by the authors in English.  相似文献   

10.
A cheap and simple colorimetric assay based on the reaction with sodium 8-aminoquinoline-5-azobenzene-4′-sulfonate (SPAQ) is applied to the determination of copper in urine and water samples. The proposed technique employs a light emitting diode (LED) as a light source and a cheap common light dependent resistor (LDR) as a detector. This device functions on the basis of the level of light received by photoresistor (LDR), which is connected to a digit multimeter yielding resistance readings increasing with the increase in light absorption by sample solution. Experimental variables affecting the complex formation were optimized applying the Taguchi method. Under the optimum conditions, calibration plot was linear in the analyte concentration range of 0.1–2 μg/mL. The stoichiometry of metal/ligand ratio, the stability constant, and molar absorptivity (ɛ) of Cu(II)-SPAQ complex were also found. The relative standard deviation for five replicate determinations of 1 μg/mL Cu(II) was 3.64% and the corresponding limit of detection was 35 μg/L.  相似文献   

11.
Summary Modest detectability in capillary electrophoresis is often a challenge for the determination of trace-level metal ions. This limitation has been addressed by the development of an enrichment procedure combining the formation of metal bis(carboxymethyl)dithiocarbamate complexes, water soluble at basic pH and sparingly soluble in an acidic environment, and solidphase extraction. Appropriate conditions were developed for a solid-phase extraction step well compatible with subsequent capillary electrophoretic separation in terms of the composition of electrophoresis and eluting buffers. At pH below 4 when the ligand carboxyl groups are non-ionized, metal ion complexes have no apparent charge and are efficiently retained on a conventional C16 cartridge. Application of a basic eluent, a borate buffer at pH9, causes the complexes to be ionized and eluted rapidly and quantitatively. Parameters affecting the retention/recovery behavior, such as the pH and ligand concentration of the loading solution, flow-rate, eluting buffer pH and concentration, etc, were examined to attain the best possible enrichment factors for trace metal ions. As a result, an increase in sensitivity over two orders of magnitude was gained that permitted lowering the detection limits for copper(II), lead(II), cadmium(II), nickel(II), and mercury(II) down to a low-μg L−1 level.  相似文献   

12.
The reactions of palladium(II) salts with 2-mercaptobenzimidazole (HL) and its 5,6-difluorinated derivative (HLF) were investigated. In the presence of hydrochloric acid, PdCl2 and K2PdCl4 react with HL and HLF in the ethanol—water and acetonitrile—water systems to form the mono-nuclear dicationic complexes [Pd(HL)4]Cl2 (1) and [Pd(LF)4]Cl2 (2). In the absence of HCl, the reactions afford the tetranuclear complex Pd4[(L)23-S,N-(L))2S,N-(L))4] (3). The reaction of triethylamine with an ethanolic solution of 3 leads to degradation of 3 and the formation of the lantern-type dinuclear complex Pd2[(μ2-(L)4] (4), in which the palladium atoms are in the nonequivalent coordination environment, PdN4 and PdS4. The reaction of K2PdCl4 with HL or HLF in the THF—water or acetonitrile—water systems (for the reaction with HLF) in the presence of Et3N produces the lantern-type dinuclear complexes Pd2[(μS,N′-(L3))4] and Pd2[(μ-S,N′-(LF))4] (5), in which the metal atoms are in the equivalent coordination environment (cis-PdN2S2). Dedicated to Academician G. A. Tolstikov on the occasion of his 75th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 45–52, January, 2008.  相似文献   

13.
Summary An ion-chromatographic procedure is described for the determination of selenium (VI) at μg L−1 level in the presence of anions and heavy metal ions. Maximum permissible concentrations and effects from each interfering substance were investigated for the Se concentration range 12.5–1,000 μg L−1. The method, optimized for the detection of SeO 4 2− , gives results suitable for speciation analysis. Total selenium can be determined after complete conversion to selenate ion by oxidation with KMnO4. The detection limit of selenium is 4.8 μg L−1 (0.96 ng for 200 μL sample). Paper presented at the 41st Pittsburgh Conference, New York, March 5–9, 1990.  相似文献   

14.
Simple, accurate, rapid, and sensitive spectrofluorimetric methods for the determination of levosulpiride in pharmaceutical formulation were developed utilizing its fluorescence reaction with Fe3+ (method A) and Al3+ (method B). The calibration curves were found to be linear in the concentration range 0.239–3.44 μg/mL and 0.310–2.730 μg/mL with limit of detection 0.005 μg/mL and 0.0032 μg/mL, respectively, for method A and method B. The reaction conditions were studied and optimized. In addition, the complexation of Mg2+ and Ca2+ was also studied. In all cases, an enhancement in fluorescence emission of levosulpiride upon formation of complex with metal ions was observed. A 2: 1 (drug: metal) stoichiometry for all the complexes was established. Benesi-Hildebrand method was applied for calculation of association constant at 25 and 35°C. The thermodynamic parameters obtained in this study revealed that the interaction process was spontaneous and mainly ΔS-driven.  相似文献   

15.
A sensitive and selective method has been developed for the determination of chromium in water samples based on using cloud point extraction (CPE) preconcentration and determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Cr(III) ions with Brilliant Cresyl Blue (BCB) in the presence of non-ionic surfactant Triton X-114. Under the optimum conditions, the preconcentration of 50 mL of water sample in the presence of 0.5 g/L Triton X-114 and 1.2 × 10−5 M BCB permitted the detection of 0.42 μg/L chromium(III). The calibration graph was linear in the range of 1.5–70 μg/L, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Cr(III) in water samples and certified water samples. In addition, the developed CPE-FAAS method was also used for speciation of the inorganic chromium species after reduction of Cr(VI) to Cr(III) using a thiosulphate solution of 120 mg/L in the presence of Hg(II) ion as a stabilizer.  相似文献   

16.
A new tridentate pyridyl Schiff base, N-isopropyl-N′-(1-pyridin-2-ylethylidene)ethane-1,2-diamine (L), was used to synthesize two dinuclear cadmium(II) complexes, [Cd2L2(μ 1,1-N3)2(N3)2] (1) and [Cd2L2(μ 1,3-NCS)2(NCS)2] (2). X-ray single crystal structure determination reveals that in both centrosymmetric complexes, the Cd atom is in a distorted octahedral coordination. In the crystal structures of 1 and 2, the dinuclear cadmium(II) complex molecules are linked, respectively, through intermolecular N–H···N and N–H···S hydrogen bonds to form infinite 1D chains. The preliminary fluorescence properties of the complexes were investigated.  相似文献   

17.
The Cu2LCl4 complex (I) with chiral bis{(E)-[(1S,4R)-Δ7,8-1-amino-2-para-menthalidene]aminohydroxy} methane (L — a derivative of natural monoterpenoid (R)-(+)-limonene) is synthesized. The crystal structure of the solvate of complex I[Cu(L)(μ-Cl)CuCl3] · iso-PrOH (II) is determined by X-ray diffraction analysis. Structure II is based on molecules of the [Cu(L)(μ-Cl)CuCl3] binuclear complexes in which L is the tetradentate cycleforming ligand. One Cl atom manifests the bridging function. The CuN4 Cl coordination unit is a square pyramid, and CuCl4 is a distorted tetrahedron. The iso-PrOH molecules are localized in cavities between the layers of structure II. The μeff value for complex I is 2.56 μB and indicates the absence of an appreciable interaction between the Cu2+ ions in the Cu(II)-Cl-Cu(II) exchange cluster. The compound CuLCl2· H2O (III) is synthesized. The μeff value for compound III is 1.6 μB. Complexes I and III are studied by EPR and IR spectroscopy. Original Russian Text ? T.E. Kokina, L.A. Glinskaya, R.F. Klevtsova, E.G. Boguslavskii, L.A. Sheludyakova, S.N. Bisyaev, A.V. Tkachev, S.V. Larionov, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 3, pp. 202–211.  相似文献   

18.
The formation of a complex with 2-(5-brom-2-pyridylazo)-5-(diethylamino)-phenol (5-Br-PADAP) and cloud point extraction have been applied to the preconcentration of cadmium followed by its determination by graphite furnace atomic absorption spectrometry (GFAAS) using octylphenoxypolyethoxyethanol (TritonX-114) as surfactant. The chemical variables affecting the separation were optimized. At pH 7.0, preconcentration of only 10 mL of sample in the presence of 0.05% TritonX-114 and 2.5 × 10−6 M 5-Br-PADAP enabled the detection of 0.04 μg/L cadmium. The enrichment factor was 21 for cadmium. The regression equation was A = 0.0439C(μg/L) + 7.2 × 10−3. The correlation coefficient was 0.9995. The precision for 10 replicate determinations at 10 μg/L Cd was 2.7% relative standard deviation (RSD). The proposed method has been applied to the determination of cadmium in water samples. The text was submitted by the authors in English.  相似文献   

19.
The coordination chemistry and cationic binding properties of 2,6-bis(pyrazol-1-ylmethyl)pyridine (L1), 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L2), and 2,6-bis(3,5-ditertbutylpyrazol-1-ylmethyl)pyridine (L3) with zinc(II) and cadmium(II) have been investigated. Reactions of L2 with zinc(II) and cadmium(II) nitrate or chloride salts produced monometallic complexes [Zn(NO3)2(L2)] (1), [ZnCl2(L2)] (2), [Cd(NO3)2(L2)] (3), and [CdCl2(L2)] (4). Solid state structures of 1 and 3 confirmed that L2 binds in a tridentate mode. While the nitrates in the zinc complex (1) adopt monodentate binding fashion, in cadmium complex (3), they exhibit bidentate mode. L1L3 show binding efficiencies of 99% for zinc(II), 60% for lead(II), and 30% for cadmium(II) cations from aqueous solutions of the metal ions. Theoretical studies using Density Functional Theory were consistent with the observed extraction results.  相似文献   

20.
Two multidentate ligands: N,N′-di-(propionic acid-2′-yl-)-2,9-di-aminomethylphenanthroline (L1) and N,N′-di-(3′-methylbutyric acid-2′-yl-)-2,9-di-amino-methylphenanthroline (L2) were synthesized and fully characterized by 1H NMR and elemental analysis. The binding ability of L1 and L2 to metal ions such as M(II) (M = Cu, Zn, Co and Ni) and Ln(III) (Ln = La, Nd, Sm, Eu, and Gd) has been investigated by potentiometric titration in aqueous solution and 0.1 mol dm−3KNO3 at 25.0 ± °C. In view of the structure of L1 and L2, mononuclear metal complexes can be formed in solution. The stability constants of binary complexes of ligands L1 and L2 with metal ions M(II) and Ln(III) have been determined respectively and further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号