首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this work, the two main factors that influence the repeatability of the laser percussion drilling process are identified. Experimental parametric analysis was carried out to correlate the laser parameters with the repeatability of a laser percussion drilling process. The experiment was conducted using a flash lamp pumped Nd:YAG laser to drill 2 mm thick mild steel sheets. The relationship between the percentage standard deviation (PSD) of entrance hole diameter, hole circularity and the operating parameters is established. Thirty-five holes were drilled and analysed for each set of identical laser parameters. The PSD of entrance hole diameter ranges between 1.47% and 4.78% for an operating window of 3.5–7 kW peak power, and 1–3 ms pulse width. The circularity of the entrance hole (defined as the ratio between the minimum and maximum diameters of the hole) ranges from 0.94 to 0.87, and is found to correlate with repeatability. The work shows that higher peak power, and shorter pulse width gives better hole geometry repeatability. The effect of melt ejection on hole geometry repeatability is also investigated. Melt ejection and spatter formation have been found to contribute to the poor repeatability of the process.  相似文献   

2.
Li Y  Itoh K  Watanabe W  Yamada K  Kuroda D  Nishii J  Jiang Y 《Optics letters》2001,26(23):1912-1914
By moving silica glass in a preprogrammed structure, we directly produced three-dimensional holes with femtosecond laser pulses in single step. When distilled water was introduced into a hole drilled from the rear surface of the glass, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. Straight holes of 4-mu;m diameter were more than 200 microm deep. Three-dimensional channels can be micromachined inside transparent materials by use of this method, as we have demonstrated by drilling a square-wave-shaped hole inside silica glass.  相似文献   

3.
The results of an extensive experimental study of the free running Nd:YAG laser drilling of a multi-layer carbon fibre composite, where adjacent layers have differently orientated fibres, are reported. For holes drilled with the laser operating in fixed-Q mode at 1064 nm, parallel sections of blind holes illustrating discontinuities in the hole size along a given section direction will be shown to occur at the interface between adjacent layers. An explanation for this effect is proposed. Detailed single pulse drilling characteristics will be presented illustrating the exit hole diameter as a function of pulse energy and material thickness. These characteristics illustrate a ‘stable' drilling regime in which the exit hole diameters are least sensitive to changes in pulse energy or material thickness and a less ‘stable' regime in which they are more strongly dependent on these parameters. Drilling characteristics will be given for two different beam qualities, illustrating the greater drilling depth and reduced hole size achievable with an improved beam quality. Finally holes drilled through a 2 mm thick sample of material with multiple pulses are considered. Size distribution curves for entrance and exit holes will be presented. The total energy required (number of pulses × pulse energy) to drill through 2 mm thick material will be reported as a function of pulse energy in stationary air and argon atmospheres and in a partial vacuum, illustrating a threshold energy which is dependent upon the drilling atmosphere. The threshold energies will be discussed with reference to plasma formation and the reactivity of the drilling atmosphere.  相似文献   

4.
Laser drilling by temporally modulated pulse is a promising technique and has many advantages compared with normal pulse drilling. In this work, the effect of modulated pulse comprising pre-heating front and sharp trail was mainly studied. The function of the former was to pre-melt the radiated material, and the latter was to expel the liquid melt from the molten pool, thus to form a blind hole. While the trail subpulse was kept constant, the difference in the pre-heating subpulse parameter could cause a considerable influence on the hole quality and drilling efficiency. The depth and volume of the molten pool were proportional to the pre-heating energy, and inversely proportional to the pre-heating duration. With pre-heating subpulses of proper parameters, the sharp trail subpulse was very effective in expelling the melt liquid, leaving only a small quantity of melt to re-solidify as the recast layer, which was observably thinner compared with the holes drilled using the normal pulse mode. In the pre-melting process, the directional melt flow and heat conduction were found to be the reasons why the deep melting phenomenon had occurred.  相似文献   

5.
苏拾  安志勇  梁伟  丛景彬  樊帆 《光子学报》2012,41(5):565-570
为了获得高质量小孔,克服单脉冲激光打孔的不足,设计了一种能够产生多脉冲激光波形的激光器电源.并在1mm厚的薄钢片上得到直径小于1mm的小孔.多脉冲打孔理论分析表明,多脉冲激光打孔不但减少了熔融物和等离子体的产生,而且降低了激光打孔对高能量的要求,获得的小孔质量优于单脉冲激光打孔.另外脉冲宽度和脉冲间距的选择对激光小孔加工质量起决定性作用,在加工高质量孔的时候,应该选用较短的激光脉冲宽度.实验表明,利用三脉冲激光输出波形打孔所获得的小孔质量要优于单脉冲激光打孔效果,有效脉冲平均能量为350mJ,宽度为100μs,脉冲间距为100μs.  相似文献   

6.
The numerous unique advantages afforded by pulsed Nd:YAG laser systems have led to their increasing utility for producing high aspect ratio holes in a wide range of materials. Notwithstanding the growing industrial acceptance of the technique, the increasingly tighter geometrical tolerances and more stringent hole quality requirements of modern industrial components demand that “defects” such as taper, recast, spatter etc., in laser-drilled holes are minimized. Process parameters like pulse energy, pulse repetition rate, pulse duration, focal position, nozzle standoff, type of gas and gas pressure of the assist gas are known to significantly influence hole quality during laser drilling. The present study reports the use of Taguchi design of experiments technique to study the effects of the above process variables on the quality of the drilled holes and ascertain optimum processing conditions. Minimum taper in the drilled hole was considered as the desired target response. The entire study was conducted in three phases:(a) screening experiments, to identify process variables that critically influence taper in laser drilled holes, (b) Optimization experiments, to ascertain the set of parameters that would yield minimum taper and (c) validation trials, to assess the validity of the experimental procedures and results. Results indicate that laser drilling with focal position on the surface of the material being drilled and employing low level values of pulse duration and pulse energy represents the ideal conditions to achieve minimum taper in laser-drilled holes. Thorough assessment of results also reveals that the laser-drilling process, optimized considering taper in the drilled hole as the target response, leads to very significant improvements in respect of other hole quality attributes of interest such as spatter and recast as well.  相似文献   

7.
Laser drilling is a common commercially developed technique for material processing. From the application viewpoint, it is the end product for a laser system, for instance a drilled hole, that matters. Laser pulse profile is the most important parameter controlling the laser hole drilling process. An efficient and practical method is therefore needed to develop a relationship between the pulse parameters and the depth of hole produced in a known material. In the present study, dimensionless groups are developed to optimize laser pulse parameters to give information on workpiece materials. Consequently, an optimal laser pulse for drilling an aluminum workpiece is predicted.  相似文献   

8.
After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process is necessary to optimise the drilling efficiency and to control the quality of the holes. A shadowgraphic imaging technique was used for studying the removal of material from the hole and the absorption of the laser beam by this removed material. Images were made at successive times both during and after the laser pulse.In drilling of thin foils, it was shown that the material was ejected mainly after the laser pulse. A comparison of different materials showed that the drilling process should be optimised for each material independently. Furthermore, the plume was found to be not fully transparent for processing materials with a strong absorption line at or near the laser wavelength. The correlation between material and drilling speed suggests improved energy transfer and improved melt ejection for the materials with this absorption. PACS 42.62.Cf; 52.38.Dx; 52.38.Mf  相似文献   

9.
We report a novel technique for laser high-speed drilling and cutting in teflon films. The new laser drilling surpasses the conventional techniques in simplicity, throughput and spatial resolution. The laser cutting and drilling process consists of three simple steps. First, a thin absorbing layer (in this case 300 Å of gold) is deposited on the teflon to allow for laser absorption. Second, the drilling is performed by pulsed-laser irradiation at the rate of one hole per pulse. The irradiation process does not completely open the holes in which debris still remain. Third, the ultrasonic cleaning in water is used to remove the modified and weakly bound material inside the drilled holes, leaving behind 50 m diameter through holes in 25 m thick teflon sheets. The drilling process-window is well mapped. The cutting process is obtained by fast scanning the laser beam at laser powers above a threshold value. This new technique is desirable for packaging because of its drilling speed as high as 60 000 holes per minute, its fast cutting and its low laser equipment cost.  相似文献   

10.
We report on the temporal evolution of the percussion drilling process in deep laser drilling. Ultrashort laser pulses at 1030 nm and a duration of 8 ps were used to machine silicon while simultaneously imaging the silhouette of the hole using an illumination wavelength above the band edge. We investigate the influence of the processing parameters fluence and pulse energy on the depth and shape of the hole demonstrating different phases of the drilling process. In the first phase, a tapered hole is formed with highly reproducible shape and depth. In the following, the evolution of the hole shape is irregular and imperfections like bulges, changes of the drilling direction and the formation of multiple hole ends occur. In the final phase, the maximum depth stays constant while the volume still increases due to enlargement of the hole diameter and the possible formation of multiple hole ends. Deviations from the ideal hole shape occur primarily in the lower part of the hole. Their extent can be reduced by increasing the amount of applied pulse energy. Moreover, the pulse energy is chiefly determining the maximum achievable hole depth, which is largely independent of the focusing conditions and corresponding fluence.  相似文献   

11.
Substrate temperature was observed to affect the machined hole depth and diameter during Ti:sapphire femtosecond laser machining of a copper substrate. We studied the blind holes drilled on copper specimens by multiple femtosecond laser (fs) pulses under two temperature conditions, namely the liquid nitrogen temperature (∼77 K) and the atmospheric temperature (∼298 K). Compared to the atmospheric temperature condition, we found that the diameters of the holes are smaller and the depths of the holes are deeper under the liquid nitrogen temperature condition. We attribute the reduction in diameter to the faster heat dissipation of the cooler substrate. We calculated multiple beam reflections in a channel and attribute the increased depth of the cooler substrate to the enhanced multiple laser beam reflections inside the laser drilled hole. PACS 79.20.Ds; 81.05; 42.62.Cf; 06.60.Jn; 81.20. Wk  相似文献   

12.
The boiling front induced by a pulsed Nd:YAG-laser at very slow translation speed was studied. The purpose is to understand fundamental melt movement mechanisms. The melt was observed by high speed imaging, with and without illumination. When switching on the laser beam a hole is drilled through a bulk of melt. The hole expands and the boiling pressure gradually opens the melt bridge, instead developing an interaction front similar to cutting. These conditions remain in quasi-steady state during the pulse. The ablation pressure from boiling shears waves down the front and keeps the melt downwards in a stable position. When switching off, the waves smoothen and in absence of boiling the surface tension drags the melt back upwards, to semi-torus-like Catenoid shape. Evidence on the large melt pool and its shape was achieved by three-dimensional reconstruction from cross section macrographs. The basic findings how melt can move with and without ablation pressure can enable controlled melt dynamics for various laser processing techniques, like remote cutting, ablation, keyhole welding or drilling.  相似文献   

13.
Alumina ceramics have found wide range of applications from semiconductors, communication technologies, medical devices, automotive to aerospace industries. Processing of alumina ceramics is rather difficult due to its high degree of brittleness, hardness, low thermal diffusivity and conductivity. Rapid improvements in laser technologies in recent years make the laser among the most convenient processing tools for difficult-to-machine materials such as hardened metals, ceramics and composites. This is particularly evident as lasers have become an inexpensive and controllable alternative to conventional hole drilling methods. This paper reports theoretical and experimental results of drilling the alumina ceramic with thicknesses of 5 mm and 10.5 mm using milisecond pulsed Nd:YAG laser. Effects of the laser peak power, pulse duration, repetition rate and focal plane position have been determined using optical and Scanning Electron Microscopy (SEM) images taken from cross-sections of the drilled alumina ceramic samples. In addition to dimensional analysis of the samples, microstructural investigations have also been examined. It has been observed that, the depth of the crater can be controlled as a function of the peak power and the pulse duration for a single laser pulse application without any defect. Crater depth can be increased by increasing the number of laser pulses with some defects. In addition to experimental work, conditions have been simulated using ANYS FLUENT package providing results, which are in good agreement with the experimental results.  相似文献   

14.
The temporal pulse train modulation during laser percussion drilling was found to effect significant changes to the material ejection processes. In particular, distinct differences in the material ejection processes have been observed between a temporal pulse train shaping technique termed as sequential pulse delivery pattern control (SPDPC) and the normal delivery pattern (NDP), wherein the parameters of successive laser pulses were constant. Due to the reduced upward material removal fractions in SPDPC drilling, the spatter deposition area was reduced from approximately 6.7 to 2.7 mm2. In addition, the melt layer thicknesses at the hole bottom were significantly increased from 11–61 to 18–369 μm. Such changes were identified as being due to the low laser pulse intensities before beam breakthrough associated with the SPDPC method. It was observed that the use of the linearly increasing SPDPC method increased the downward material removal fractions, from 20% to 28% observed in NDP drilling, to 34%–39%. Such an increase in the downward material ejection mechanism in SPDPC drilling was identified as being primarily due to the pointed blind-hole profile generated before the onset of beam breakthrough. The work has shown that modulating the entire pulse train in laser percussion drilling could control the material ejection processes. Furthermore, the fundamental elements of the SPDPC technique are given in terms of the rate of energy deposition and total pulse train energy.  相似文献   

15.
An analysis on the repeatability of a laser percussion drilling process is conducted using a flash lamp pumped Nd:YAG laser on 2 mm thick stainless-steel sheets. Laser drilling process is finding increasingly widespread application in the industry and has continually attracted new interests to the industry in recent years. However, the inherent problem of hole geometry repeatability associated with laser percussion drilling is likely to limit the extent of industrial applications of the process. The characteristic of melt ejection is found to be dependent on the parameter setting and is shown to have a significant influence on entrance hole geometry and hence repeatability. The relationship between the percentage standard deviation of entrance hole diameter and the operating parameters is established, and varies between 1.8% and 5.6% in the operating range under this study.  相似文献   

16.
Deep laser holes were drilled in copper sheets using various pulse lengths and environments. By recording the intensity on a photodiode placed under the sample while drilling the holes, we obtained the number of pulses to drill through the sheet as a function of pulse length and energy. The entrance diameter of the holes was successfully predicted using a Gaussian approximation and a material removal fluence threshold of 0.39 J/cm2 for a pulse length of 150 fs. From cross sections of the holes, the morphology of the inside walls was observed and shows an increase in the amount of molten material with pulse length. A transition pulse length is defined as the point at which the laser affected material goes from being mainly vaporized to mainly melted. This transition occurs near ∼10 ps, which corresponds approximately to the electron–phonon relaxation time for copper. PACS 62.20.Mk; 62.25.+g; 79.20.Ds  相似文献   

17.
Classical molecular dynamics simulation technique is applied for investigation of the iron ablation by ultrashort laser pulses at conditions of deep hole for the first time. Laser pulse duration of 0.1 ps at wavelength of 800 nm is considered. The evolution of the ablated material in deep hole geometry differs completely from the free expansion regime as two major mechanisms are important for the final hole shape. The first one is the deposition of the ablated material on the walls, which narrows the hole at a certain height above its bottom. The second mechanism is related to ablation of the material from the walls (secondary ablation) caused by its interaction with the primary ablated particles. Properties of the secondary ablated particles in terms of the velocity and the angular distribution are obtained. The material removal efficiency is estimated for vacuum or in Ar environment conditions. In the latter case, the existence of well-defined vapor cloud having low center of the mass velocity is found. The processes observed affect significantly the material expulsion and can explain the decrease of the drilling rate with the hole depth increase, an effect observed experimentally.  相似文献   

18.
A femtosecond laser is used to fabricate microchannels with high aspect ratios by laser direct ablation. Drilling both in air and in water is investigated. It is found that at low pulse energy, drilling in water can generate channels with high aspect ratios. However, at high pulse energy, water-assisted drilling stops working and only very shallow holes can be obtained. The reason for this is presented. On the contrary, the aspect ratio of holes drilled in air increases significantly at high pulse energy. The effects of writing speed and repeated fabrication are also investigated, and an optimum writing speed is determined for fixed laser parameters.  相似文献   

19.
In the paper, the result on femtosecond laser drilling of alumina ceramic substrate was reported. The effects of various laser parameters such as different focus position, traverse speed, drilling pattern, pausing time, etc. on the drilled hole quality in terms of surface finish, heat affected zone (HAZ), hole circularity, debris, microcracks were studied. The quality of laser-drilled holes on alumina ceramic substrates was evaluated with optical microscope, SEM/EDX, and X-ray μ-CT analysis. The optimum drilling conditions were identified. High-quality laser-drilled holes on alumina ceramic substrates were demonstrated. The developed process has potential application in manufacturing of alumina substrate based electronic devices.  相似文献   

20.
Precision drilling can improve the microhole quality by yielding a reduced recast layer thickness and no heat-affected zone. We evaluate the quality of the helical drilled holes, e.g., the recast layer, microcracks, and circularity by scanning electron microscopy. We investigate the overlap rate of the laser beam and find its influence on the efficiency of through-hole machining. The microhole entrance, exit, and side walls are smooth, without an accumulation of spattering material and the formation of a recast layer and microcracks. Optimum parameters for drilling through holes on alloy material GH2132 are a thickness of 500 μm, a laser fluence of 3.06 · 10?2 J/mm2, a pulse repetition rate of 100 kHz, and a helical speed of 60 rev/s. The tapering phenomenon can be avoided by using a helical system with a rotating stage, and the hole circularity is fairly good. Picosecond laser helical drilling can be effective for manufacturing microholes with a high quality. The development of high-power picosecond laser would promote picosecond laser drilling with future industrial relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号