首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of nitrogen on the internal structure and so on the electrical properties of silicon thin films obtained by low‐pressure chemical vapor deposition (LPCVD) was studied using several investigation methods. We found by using Raman spectroscopy and SEM observations that a strong relationship exists between the structural order of the silicon matrix and the nitrogen ratio in film before and after thermal treatment. As a result of the high disorder caused by nitrogen on silicon network during the deposit phase of films, the crystallization phenomena in term of nucleation and crystalline growth were found to depend upon the nitrogen content. Resistivity measurements results show that electrical properties of NIDOS films depend significantly on structural properties. It was appeared that for high nitrogen content, the films tend to acquire an insulator behavior. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We studied the stability and light-induced paramagnetic centers in hydrogenated nanocrystalline silicon thin films (nc-Si:H) by electron-spin-resonance (ESR) and photothermal-deflection-spectroscopy (PDS). There is no measurable change in defect density upon illumination with white light with a light intensity of 300 mW cm?2 for 300 h. At low temperatures, upon illumination with sub-bandgap light, a light-induced ESR signal appears. This signal is similar to that in hydrogenated micro-crystalline silicon (μc-Si:H).  相似文献   

3.
J.M. Aitken 《Journal of Non》1980,40(1-3):31-47
In this paper the technological and scientific aspects of radiation-related charge trapping in thin SiO2 films are reviewed. These films are amorphous in nature and are thermally grown on single crystal silicon substrates serving as the insulating layer in metal-oxide-semiconductor (MOS) capacitors and transistors. The structure and operation of these devices are reviewed with special emphasis on the effect of charges trapped in the oxide. The technical importance of understanding the interaction of ionizing radiation with thin SiO2 films is illustrated with two practical examples. The first involves the operation of MOS transistors in environments where ionizing radiation is present, leading to an accumulation of positive space charge in the oxide. The second deals with process-induced defects generated by radiation encountered during the fabrication of devices by processes such as electron beam lithography or electron gun metallization. Unannealed traps of this type capture hot electrons producedin the substrate during the operation of the MOS transistor. In both these examples, the charging of the oxide results in instabilities which degrade operation.

Its sensitivity to charge trapped in the insulator makes the MOS system an ideal vehicle for scientific study of these phenomena. The basic techniques for characterizing the density, capture cross-sections, and location are briefly discussed and applied to the problem of radiation-induced defects in thin SiO2 films. Ionizing radiation is shown to interact with the SiO2 in two modes. In the first it supplies carriers to fill pre-existing hole traps at the interfaces. In the second it creates electron and hole traps in the bulk of the thin film. These latter defects are in a neutral state after irradiation and are detectable only when either electrons or holes are subsequently injected into the oxide. The capture cross-sections, trap densities and location of these centers in the film are presented. The annealing treatments required to remove these traps from aluminium and polysilicon gate devices are also discussed. The number traps produced by an incident 25 KV electron beam is found to depend weakly on the dosage. A dipolar defect, produced by the ionizing radiation, seems to explain the behavior of the neutral centers.  相似文献   


4.
5.
C.W. Chang  T. Matsui  M. Kondo 《Journal of Non》2008,354(19-25):2365-2368
Paramagnetic defects of undoped hydrogenated microcrystalline silicon–germanium alloys (μc-Si1?xGex:H) grown by low temperature (200 °C) plasma-enhanced chemical vapor desposition (PECVD) have been measured by electron spin resonance (ESR) and compared with those of hydrogenated amorphous silicon–germanium (a-Si1?xGex:H). The spin density of μc-Si1?xGex:H increases with Ge content and shows a broad maximum of ~1017 cm?3 at x  0.5, which reasonably accounts for the decreased photoconductivity. While the Ge dangling bond defects prevail in a-Si1?xGex:H for Ge-rich compositions, we detected no ESR signal in μc-Si1?xGex:H for x > 0.75 where an electrical change occurs from weak n- to strong p-type conduction. These results indicate that dangling bonds are charged in large densities due to the presence of the acceptor-like states in undoped μc-Si1?xGex:H.  相似文献   

6.
The effect of dopants on the crystal growth and the microstructure of poly-crystalline silicon (poly-Si) thin film grown by metal induced lateral crystallization (MILC) method was intensively investigated. PH3 and B2H6 were used as source gases in ion mass doping (IMD) process to make n-type and p-type semiconductor respectively. It was revealed that the microstructure of MILC region varies significantly as the doping type of the samples varied from intrinsic to n-type and p-type, which was investigated by field emission (FE)-SEM. The microstructure of MILC region of the intrinsic was bi-directional needle network structure whose crystal structure has a (1 1 0) preferred orientation. For p-type doped sample, the microstructure of MILC region was revealed to become unidirectional parallel growth structure more and more as MILC growth proceed, which was led by unidirectional division of needlelike grain at the front of MILC region. And for n-type doped sample, the microstructure was random-directional needlelike growth structure. These phenomena can be explained by an original model of Ni ion and Ni vacancy hopping in the NiSi2 phase and its interface at the front of MILC region.  相似文献   

7.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

8.
We have used plasma enhanced chemical vapor deposition (PECVD) to deposit silicon thin films (~0.2–1 μm) with different crystallinity fractions on Nanosensors PtIr5 coated atomic force microscopy (AFM) cantilevers (450 × 50 × 2 μm3). Microscopic measurements of Raman scattering were used to map both internal stress and extrinsic stress induced in the films by bending the cantilevers using a nanomanipulator (Kleindiek Nanotechnik MM3A). Thanks to the excellent elasticity of the cantilevers, the films could be bent to curvature radii down to 300 μm. We observed the stress induced shift of the TO–LO phonon Raman band of more than 3 cm?1 for fully microcrystalline film corresponding to the stress ~0.8 GPa. The shift of the similar film with amorphous structure was ~2.5 cm?1.  相似文献   

9.
《Journal of Non》2006,352(9-20):1003-1007
Raman backscattering and hydrogen effusion measurements were performed on compensated, highly P- and B-doped laser crystallized polycrystalline silicon. From hydrogen effusion spectra the hydrogen chemical potential, μH, is determined as a function of hydrogen concentration, which can be related to the hydrogen density-of-states distribution. Interestingly, hydrogen bonding is affected by doping of the amorphous starting material. Below the hydrogen transport states, four peaks are observed in the hydrogen density-of-states at 2.0, 2.2, 2.5 and 2.8 eV. The latest peak is not observed in B-doped samples. The hydrogen effusion results will be correlated with the results obtained from Raman backscattering measurements.  相似文献   

10.
Raman spectra of the mixed phase silicon films were studied for a sample with transition from amorphous to fully microcrystalline structure using four excitation wavelengths (325, 514.5, 632.8 and 785 nm). Factor analysis showed the presence of two and only two spectrally independent components in the spectra within the range from 250 to 750 cm?1 for all four excitation wavelengths. The 785 nm excitation was found optimal for crystallinity evaluation and by comparison with surface crystallinity obtained by atomic force microscopy, we have estimated the ratio of integrated Raman cross-sections of microcrystalline and amorphous silicon at this wavelength as y = 0.88 ± 0.05.  相似文献   

11.
12.
Four series of intrinsic thin Si films were prepared by plasma enhanced chemical vapor deposition at standard and high growth rate conditions. We suggest a simple ‘μc-Si:H layer quality factor’ based on the ratio of subgap optical absorption coefficient values: α(1.4 eV)/α(1 eV). This ratio minimizes the light scattering effects for rough films and can serve as a reliable detection of the amorphous/microcrystalline structure transition and also as a figure of merit for the microcrystalline layer. The quality factor is evaluated for series of our samples with well known structure and also compared with samples from other laboratories with different deposition and measurement techniques.  相似文献   

13.
Photoluminescence (PL) was studied in silicon rich oxide (with the atomic percentage ranges of Si from 35% to 75%) thin film samples, fabricated by the plasma assisted CVD technique. A broad PL peak, blue-shifted from the bulk silicon band edge of ~1.1 eV, was observed. In one typical sample, the PL peak intensity shows a non-monotonic temperature dependence. This non-monotonic dependence was also observed in previous work by others and attributed to an energy splitting between the excitonic singlet and triplet levels in silicon nanocrystals, a consequence of quantum confinement effect. Finally, in more than 20 samples under different thermal treatments (with the annealing temperature range from 800 °C to 1100 °C), the wavelength of PL peak was observed to be pinned between ~900 and ~1000 nm, independent of thermal budget. This pinning effect, we believe, is probably due to the formation of oxygen-related interface states.  相似文献   

14.
Hydrogenated amorphous silicon (a-Si:H) and hydrogenated amorphous silicon-oxide alloy films (a-SiOx:H) were investigated by temperature dependence of lateral photovoltage (LPV) measurements. The suboxide sample with [O] = 27 at.%, was found to exhibit larger LPV compared to the unalloyed sample. It is difficult to simply correlate LPV measurements to related diffusion length measurements, only. On the other hand, the observed magnitude of LPV in a-Si:H and its decrease with temperature, could be explained based on an internal electric field induced by diffusion electron and hole currents, and multiple trapping of the photocarriers.  相似文献   

15.
The growth and characterization of zirconium oxide (ZrO2) thin films prepared by thermal oxidation of a deposited Zr metal layer on SiO2/Si were investigated. Uniform ZrO2 thin film with smooth surface morphology was obtained. The thermal ZrO2 films showed a polycrystalline structure. The dielectric constant of the ZrO2 film has been shown to be 23, and the equivalent oxide thickness (EOT) of the ZrO2 stacked oxide is in the range of 3.38–5.43 nm. MOS capacitors with ZrO2 dielectric stack show extremely low leakage current density, less than 10?6 A/cm2 at ?4 V. Consequently, using this method, high-quality ZrO2 films could be fabricated at oxidation temperature as low as 600 °C.  相似文献   

16.
T. Sameshima  M. Hasumi 《Journal of Non》2012,358(17):2162-2165
We report the rapid thermal crystallization of silicon films using infrared semiconductor laser. Carbon films were used on silicon films to absorb the laser light. Uniform crystalline regions were achieved by a line shape laser beam with a length of 20 μm. Polycrystalline silicon thin film transistors were fabricated in crystallized regions. The effective electron carrier mobility and threshold voltage were achieved to be 130 cm2/Vs and 0.4 V, respectively, when the crystalline volume ratio of the silicon films was 0.95.  相似文献   

17.
18.
Magnetron sputtered hydrogenated amorphous silicon (a-Si:H) thin films have been characterized. Hydrogen (H2) with argon (Ar) was introduced into the sputtering chamber to create the plasma. A sudden increase in the deposition rate occurred when the hydrogen was added. The maximum hydrogen content of 16 atomic percent (at.%) was achieved and a bandgap of about 2.07 eV was determined from the spectral investigations of the hydrogenated films. The effect of radio frequency (RF) power on the deposition rate, as well as on the hydrogen content was investigated. To change the hydrogen content in the films, the hydrogen flow rate was varied while keeping the argon flow rate constant. The hydrogen content in the films increased with increasing hydrogen flow rate up to the maximum content of 16 at.% and then decreased for further increases in hydrogen flow.  相似文献   

19.
A detailed investigation of the compositional, optical and electrical properties of a chromium silicide layer grown at room temperature on top of doped amorphous silicon films is presented. The formation of the layer is promoted only when phosphorous atoms are present in the film. The deposition of a very thin n-type doped layer (around 5 nm) on top of a p-type doped film has allowed us to achieve the chromium silicide formation also on p-type material without changing its doping properties. Angle resolved X-ray photoelectron spectroscopy measurements demonstrate the presence of chromium-oxide, chromium silicide and metallic chromium in similar percentages for both p- and n-type doped layers. From the ellipsometric analysis, the refractive index spectra have been extracted, and the layer thickness has been estimated to be 5 nm for both p- and n-type doped layers. From planar conductivity measurements, we have found that the chromium silicide promotes an activation energy reduction from 0.24 eV down to 0.017 eV for the n-type layer and from 0.36 eV down to 0.14 eV for the p-type film.  相似文献   

20.
《Journal of Non》2006,352(9-20):1083-1086
We have used mass spectrometry to detect hydrogen effusing from silicon thin films exposed to light. Our results indicate a long range diffusion of hydrogen through the whole film, which ends with its release into the vacuum system. The changes in the film properties are characterized by dark and photoconductivity and hydrogen exodiffusion measurements. From the evolution of dark conductivity measurements after turning off the light, we show that this long range motion of hydrogen is not due to the heating of the sample. A comparison of hydrogen exodiffusion spectra of as-deposited and light-soaked samples shows that the weakly-bonded hydrogen content decreases by 30% for a-Si:H films and that the tightly-bonded hydrogen migrates to grain boundaries of crystalline regions in the case of pm-Si:H films. These results clearly demonstrate the long range motion of hydrogen during light soaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号