首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Aluminum oxide activated by heating to 350-400 °C retains n-alkanes with more than about 20 carbon atoms, whereas iso-alkanes largely pass the column non-retained. Retention of n-alkanes is strong with n-pentane or n-hexane as mobile phase, but weak or negligible with cyclohexane or iso-octane. It is strongly reduced with increasing column temperature. Even small amounts of polar components, such as modifiers or impurities in the mobile phase, cause the retention of n-alkanes to irreversibly collapse. Since n-alkanes are not more polar than iso-alkanes and long chain n-alkanes not more polar than those of shorter chains, retention by a mechanism based on steric properties is assumed. The sensitivity to deactivation by polar components indicates that polar components and n-alkanes are retained by the same sites. The capacity for retaining n-alkanes is low, with the effect that the retention of n-alkanes depends on the load with retained paraffins. These retention properties are useful for the pre-separation of hydrocarbons in the context of the analysis of mineral oil paraffins in foodstuffs and tissue, where plant n-alkanes, typically ranging from C23 to C33, may severely disturb the analysis (subject of Part II).  相似文献   

2.
The specific heat capacity was measured with step-scan differential scanning calorimetry for linear alkanes from pentane (C(5)H(12)) to nonadecane (C(19)H(40)), for several cyclic alkanes, for linear and cyclic polyethylenes, and for a linear and a cyclic polystyrene. For the linear alkanes, the specific heat capacity in the equilibrium liquid state decreases as chain length increases; above a carbon number N of 10 (decane) the specific heat asymptotes to a constant value. For the cyclic alkanes, the heat capacity in the equilibrium liquid state is lower than that of the corresponding linear chains and increases with increasing chain length. At high enough molecular weights, the heat capacities of cyclic and linear molecules are expected to be equal, and this is found to be the case for the polyethylenes and polystyrenes studied. In addition, the thermal properties of the solid-liquid and the solid-solid transitions are examined for the linear and cyclic alkanes; solid-solid transitions are observed only in the odd-numbered alkanes. The thermal expansion coefficients and the specific volumes of the linear and cyclic alkanes are also calculated from literature data and compared with the trends in the specific heats.  相似文献   

3.
取代烷烃极性交替规律的进一步探讨   总被引:6,自引:2,他引:4  
运用 G94W量子化学程序包,在 HF/6-31+ G基组和全几何优化的水平上,对一系列烷烃及其取代烷烃分子进行从头计算.通过比较母体烷烃及取代烷烃中原子的电荷,进一步证实并具体阐述取代烷烃有如共轭体系那样也存在极性交替规律.并着重提出了诱导极性有向叠加的观点,探讨其在定性分析键型相同的同分异构体稳定性等方面的应用.  相似文献   

4.
Scanning tunneling microscopy (STM) has been used to investigate the structure of pure and mixed monolayers formed by adsorption of long-chain alkanes and/or ethers on highly ordered pyrolytic graphite. Application of a pure phenyloctane solution of simple alkanes, such as tritriacontane, CH3(CH2)31CH3, produced a monolayer within which the individual molecular axes were oriented perpendicular to the lamellar axes. In contrast, a pure solution of symmetrical long-chain ethers, such as di-n-hexadecyl ether, CH3(CH2)15O(CH2)15CH3, produced a monolayer within which the molecular axes were oriented at an angle of approximately 65 degrees relative to the lamellar axes. The compositions of the overlying solutions were then gradually changed either from pure alkanes to nearly pure ethers or from pure ethers to nearly pure alkanes. When ethers replaced alkanes in the monolayer, the ethers conformed to the orientation within the existing alkane layer, rather than adopting the characteristic orientation of pure ether monolayers. However, when alkanes were incorporated into monolayers that had been formed from pure ether solutions, the orientation of the molecules within the monolayer converted to that characteristic of pure alkanes. Alkane monolayers thus acted as templates for subsequent ether layers, but ether monolayers did not act as templates for alkane layers.  相似文献   

5.
Summary: Linear and branched alkanes are oligomers of polyethylene. Alkanes with higher molar masses are called waxes. These substances are widely used as fuels, oils, lubricants, etc. and for these reasons many groups have tried to analyse, separate and characterise alkanes by various methods, including liquid chromatography. Alkanes may be separated according to their size in solution by SEC. In addition to chromatographic systems separating in the SEC mode, various sorbent-solvent systems have been published, where alkanes have been separated one from another by adsorption and/or precipitation mechanism. The mobile phase is either a non-polar solvent or a polar solvent or a mixture of a solvent and a non-solvent for alkanes. Even near critical conditions, which have several advantages for applications of HPLC in polymer analysis, have been identified for alkanes. Moreover, selective separations of branched alkanes according to their structure have been published. In the majority of these published studies, solvents with low boiling points have been used as the mobile phases, which do not allow dissolution of crystalline polyolefins at atmospheric pressure. However, taking into account experiences with the separation of alkanes, new HPLC systems for the separation of polyolefins may be developed. This is a major challenge and first results are presented in this contribution.  相似文献   

6.
Branched alkane hydrocarbons are thermodynamically more stable than straight-chain linear alkanes. This thermodynamic stability is also manifest in alkane bond separation energies. To understand the physical differences between branched and linear alkanes, we have utilized a novel density functional theory (DFT) definition of steric energy based on the Weiz?cker kinetic energy. Using the M06-2X functional, the total DFT energy was partitioned into a steric energy term (E(s)[ρ]), an electrostatic energy term (E(e)[ρ]), and a fermionic quantum energy term (E(q)[ρ]). This analysis revealed that branched alkanes have less (destabilizing) DFT steric energy than linear alkanes. The lower steric energy of branched alkanes is mitigated by an equal and opposite quantum energy term that contains the Pauli component of the kinetic energy and exchange-correlation energy. Because the steric and quantum energy terms cancel, this leaves the electrostatic energy term that favors alkane branching. Electrostatic effects, combined with correlation energy, explains why branched alkanes are more stable than linear alkanes.  相似文献   

7.
Hydrogenolysis of cyclic alkanes is catalysed by [(triple bond)SiO)(2)Ta-H] (1) at 160 degrees C and leads to lower alkanes and cyclic alkanes including cyclopentane. The turnover number is correlated with the number of carbon atoms of the cyclic alkanes, and therefore while cycloheptane is readily transformed, cyclopentane does not give any product (<1 %). The mechanism of ring contraction probably involves carbene de-insertion as a key carbon-carbon bond-cleavage step. The reluctance of cyclopentane to undergo hydrogenolysis was further studied: under the reaction conditions cyclopentane reacts with 1 to give the corresponding cyclopentyl derivative [(triple bond)SiO)(2)Ta-C(5)H(9)] (13), which evolves towards cyclopentadienyl derivative [(triple bond)SiO)(2)Ta(C(5)H(5))] (14) according to both solid-state NMR and EXAFS spectroscopies. This latter complex is inactive in the hydrogenolysis of alkanes, and therefore the formation of cyclopentane in the hydrogenolysis of various cyclic alkanes is probably responsible for the de-activation of the catalyst by formation of cyclopentadienyl complexes.  相似文献   

8.
A cylindrical capsule provides an environment for straight-chain alkanes that can properly fill the space through extended or compressed conformations. The encapsulation rates of a series of alkanes were examined and found to be dependent on guest length: the rates of uptake are C(9) > C(10) > C(11), while complex stability is in the reverse order, C(11) > C(10) > C(9). Direct competition experiments, pairwise or between all 3 alkanes, maintain this order as the longer alkanes sequentially displace the shorter ones. The distribution of species with time provides a clock for this complex system, which combines elements of self-sorting phenomena and dynamic combinatorial chemistry. The clock can be stopped by replacing the alkanes with the superior guest 4,4'-dimethylazobenzene, then restarted by irradiation.  相似文献   

9.
Photooxidation of alkanes by dioxygen occurred under visible light irradiation of 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) which acts as a super photooxidant. Solvent‐free hydroxylation of cyclohexane and alkanes is initiated by electron transfer from alkanes to the singlet and triplet excited states of DDQ to afford the corresponding radical cations and DDQ??, as revealed by femtosecond laser‐induced transient absorption measurements. Alkane radical cations readily deprotonate to produce alkyl radicals, which react with dioxygen to afford alkylperoxyl radicals. Alkylperoxyl radicals abstract hydrogen atoms from alkanes to yield alkyl hydroperoxides, accompanied by regeneration of alkyl radicals to constitute the radical chain reactions, so called autoxidation. The radical chain is terminated in the bimolecular reactions of alkylperoxyl radicals to yield the corresponding alcohols and ketones. DDQ??, produced by the photoinduced electron transfer from alkanes to the excited state of DDQ, disproportionates with protons to yield DDQH2.  相似文献   

10.
贾玉香  郭向云 《分子催化》2006,20(2):162-165
利用Monte Carlo(MC)方法考察了烷烃的分子尺寸与介质孔道尺寸对孔道中甲醇脱附和萃取的影响.研究表明,随孔道尺寸的增加,不同碳链的正烷烃(C5~C8)对甲醇脱附作用受孔尺寸的影响在逐渐减小;孔道尺寸不同对正烷烃萃取能力的影响程度也不相同.  相似文献   

11.
The adsorption and separation of linear and branched alkanes in the isoreticular metal-organic framework IRMOF-1 have been investigated using Monte Carlo simulation. For pure linear alkanes (C1-nC5), the limiting adsorption properties exhibit linear behavior with the alkane carbon number; the long alkane is preferentially adsorbed over the short alkane at low fugacities, whereas the reverse is found at high fugacities. For pure branched alkanes (C5 isomers), the linear isomer adsorbs more than its branched analogue. The adsorbed amounts of pure alkanes in IRMOF-1 are substantially greater than in a carbon nanotube bundle and in silicalite. For a five-component mixture of C1 to nC5 linear alkanes, the long alkane adsorption first increases and then decreases with increasing fugacity, whereas short alkane adsorption continually increases and progressively replaces the long alkane at high fugacity due to the size entropy effect. For a three-component mixture of C5 isomers, the adsorption of each isomer increases with increasing fugacity until saturation, though there is less adsorption of the branched isomer due to the configurational entropy effect. The adsorption selectivity among the alkanes in IRMOF-1 is smaller than in a carbon nanotube bundle and in silicalite.  相似文献   

12.
Carbon-13 NMR chemical shifts have been measured in a number of binary mixtures of normal alkanes. Intrinsic solvent shifts are deduced from the shifts and the relevance of some small substituent effects in alkanes is discussed. A comparison is made between solvent effects and thermally induced chemical shift differences in alkanes.  相似文献   

13.
Well-defined surface alkylidenes and alkylidynes can be compared to their molecular counterparts in structural features and formation pathways, but their reactivity towards alkanes is strikingly different. They catalyse the metathesis of alkanes and cross-metathesis of alkanes, whereas no single-component molecular system is known to do so. Herein, we study such reactivity in terms of structure-activity relationships, to further propose a comparison to the reactivity of well-defined group 4-6 supported hydrides, focused on the alkane metathesis and alkane hydrogenolysis processes. There, the formation of intermediates containing alkylidenes and alkylidynes nicely pinpoints their pre-eminence in the catalytic conversion of alkanes, always in agreement with the elementary steps of molecular organometallic chemistry. Finally, a number of relevant reactions where the formation of alkylidene/alkylidyne intermediates has been presumed are also presented.  相似文献   

14.
提供了一种用以描述石油中烷烃分子的通用型粗粒化模型.依据石油中烷烃的结构特征,划分出从A1到A7共7种粗粒化珠子.7种烷烃的粗粒化珠子含有3~6个碳原子,与之相对应的既有直链烷烃,也有支链烷烃.这些基本结构单元以不同的组合方式可以得到石油中从C3~C40各种烷烃的粗粒化分子.为了获得精确的力场参数,采用密度泛函方法优化...  相似文献   

15.
We present a systematic test of the performance of three popular united‐atom force fields—OPLS‐UA, GROMOS and TraPPE—at predicting hydrophobic solvation, more precisely at describing the solvation of alkanes in alkanes. Gibbs free energies of solvation were calculated for 52 solute/solvent pairs from Molecular Dynamics simulations and thermodynamic integration making use of the IBERCIVIS volunteer computing platform. Our results show that all force fields yield good predictions when both solute and solvent are small linear or branched alkanes (up to pentane). However, as the size of the alkanes increases, all models tend to increasingly deviate from experimental data in a systematic fashion. Furthermore, our results confirm that specific interaction parameters for cyclic alkanes in the united‐atom representation are required to account for the additional excluded volume within the ring. Overall, the TraPPE model performs best for all alkanes, but systematically underpredicts the magnitude of solvation free energies by about 6% (RMSD of 1.2 kJ/mol). Conversely, both GROMOS and OPLS‐UA systematically overpredict solvation free energies (by ∼13% and 15%, respectively). The systematic trends suggest that all models can be improved by a slight adjustment of their Lennard‐Jones parameters. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
《Analytical letters》2012,45(11):1031-1034
Abstract

Quantitation by gas chromatography requires the use of suitable internal standards. Deuteriated analogs are superior, but usually require a mass spectrometer as the gas chromatographic detector to distinguish them from the compounds being measured. Completely deuteriated alkanes are, however, completely separated from the corresponding unlabelled alkanes and serve as suitable internal standards for the quantitation of environmental alkanes by gas chromatography alone.  相似文献   

17.
The influence of pressure on the oxidative cracking of light alkanes C2—C4 was investigated. An elevated pressure reduces the temperature of oxycracking of light alkanes but with further increase in pressure the effect is reduced. The applied pressure decreases the temperature of the total conversion of oxygen while the maximum conversion of alkanes is not influenced. The pressure above atmospheric promotes oxidative cracking reactions but weakly affects thermal processes. At deep conversion of light alkanes, the selectivity towards main products is nearly invariable at the utilized pressures.  相似文献   

18.
Metathesis of cyclic alkanes catalyzed by the new surface complex [(?SiO)W(Me)5] affords a wide distribution of cyclic and macrocyclic alkanes. The major products with the formula CnH2n are the result of either a ring contraction or ring expansion of cyclooctane leading to lower unsubstituted cyclic alkanes (5≤n≤7) and to an unprecedented distribution of unsubstituted macrocyclic alkanes (12≤n≤40), respectively, identified by GC/MS and by NMR spectroscopies.  相似文献   

19.
建立了一种工业混合烷中含硫化合物的新的定性鉴定方法。样品经过氢氧化钾和硝酸银预处理后,可将工业混合烷中含硫化合物的硫醇、硫醚和噻吩进行分离,而后用GC-MS测定,鉴定了工业混合烷中30种硫醚和5种硫醇化合物。  相似文献   

20.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号