首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, a unified algorithm is proposed for solving a class of convex separable nonlinear knapsack problems, which are characterized by positive marginal cost (PMC) and increasing marginal loss–cost ratio (IMLCR). By taking advantage of these two characteristics, the proposed algorithm is applicable to the problem with equality or inequality constraints. In contrast to the methods based on Karush–Kuhn–Tucker (KKT) conditions, our approach has linear computation complexity. Numerical results are reported to demonstrate the efficacy of the proposed algorithm for different problems.  相似文献   

2.
A common problem frequently faced by business firms and individual investors is to select a few investment opportunities from many available possibilities. This problem, in its simplest form, can be modeled as a 0–1 knapsack problem. In a more general investment scenario, however, we obtain a model which is a general knapsack problem with a multiple-choice constraint. To solve this problem, an efficient enumerative algorithm is developed. The algorithm includes an efficient procedure to solve the LP-relaxed problem, a reduction algorithm which may allow the initial fixing of some of the variables, and various other implicit enumeration criteria derived from the group problem. Extensive computational experience illustrates the efficiency of the algorithm and related results.  相似文献   

3.
An algorithm is presented which solves bounded quadratic optimization problems with n variables and one linear constraint in at most O(n) steps. The algorithm is based on a parametric approach combined with well-known ideas for constructing efficient algorithms. It improves an O(n log n) algorithm which has been developed for a more restricted case of the problem.  相似文献   

4.
In this note, we analyze a bilevel interdiction problem, where the follower’s program is a parametrized continuous knapsack. Based on the structure of the problem and an inverse optimization strategy, we propose for its solution an algorithm with worst-case complexity O(n2).  相似文献   

5.
The multiple-choice knapsack problem is a binary knapsack problem with the addition of disjoint multiple-choice constraints. We describe a branch and bound algorithm based on embedding Glover and Klingman's method for the associated linear program within a depth-first search procedure. A heuristic is used to find a starting dual feasible solution to the associated linear program and a ‘pegging’ test is employed to reduce the size of the problem for the enumeration phase. Computational experience and comparisons with the code of Nauss and an algorithm of Armstrong et al. for the same problem are reported.  相似文献   

6.
Buffer allocation for a class of nonlinear stochastic knapsack problems   总被引:1,自引:0,他引:1  
In this paper, we examine a class of nonlinear, stochastic knapsack problems which occur in manufacturing, facility or other network design applications.Series, merge-and-split topologies of series-parallelM/M/1/K andM/M/C/K queueing networks with an overall buffer constraint bound are examined. Bounds on the objective function are proposed and a sensitivity analysis is utilized to quantify the effects of buffer variations on network performance measures.  相似文献   

7.
The fractional knapsack problem to obtain an integer solution that maximizes a linear fractional objective function under the constraint of one linear inequality is considered. A modification of the Dinkelbach's algorithm [3] is proposed to exploit the fact that good feasible solutions are easily obtained for both the fractional knapsack problem and the ordinary knapsack problem. An upper bound of the number of iterations is derived. In particular it is clarified how optimal solutions depend on the right hand side of the constraint; a fractional knapsack problem reduces to an ordinary knapsack problem if the right hand side exceeds a certain bound.  相似文献   

8.
We consider a class of nonlinear knapsack problems with applications in service systems design and facility location problems with congestion. We provide two linearizations and their respective solution approaches. The first is solved directly using a commercial solver. The second is a piecewise linearization that is solved by a cutting plane method.  相似文献   

9.
The zero-one knapsack problem is a linear zero-one programming problem with a single inequality constraint. This problem has been extensively studied and many applications and efficient algorithms have been published. In this paper we consider a similar problem, one with an equality instead of the inequality constraint. By replacing the equality by two inequalities one of which is placed in the economic function, a Lagrangean relaxation of the problem is obtained. The relation between the relaxed problem and the original problem is examined and it is shown how the optimal value of the relaxed problem varies with increasing values of the Lagrangean multiplier. Using these results an algorithm for solving the problem is proposed.The paper concludes with a discussion of computational experience.  相似文献   

10.
A chance constrained stochastic program is considered that arises from an application to college enrollments and in which the objective function is the expectation of a linear function of the random variables. When these random variables are independent and normally distributed with mean and variance that are linear in the decision variables, the deterministic equivalent of the problem is a nonconvex nonlinear knapsack problem. The optimal solution to this problem is characterized and a greedy-type heuristic algorithm that exploits this structure is employed. Computational results show that the algorithm performs well, especially when the normal random variables are approximations of binomial random variables.  相似文献   

11.
A new heuristic procedure, which is called Smart Greedy, is proposed for solving a kind of general reliability optimization problems (non-DGR type knapsack problems). Smart Greedy uses Recursive Greedy with multiple greedy functions designated by balance coefficients, generates several solutions and then determines the best solution among them as the smart greedy solution. Recursive Greedy first checks the feasibility of sets of items for a given problem and removes infeasible items from the item sets. Second, the procedure checks the gain ratio of increments of objective function to constraint function and reduces the problem to DGR type problem by invoking LP dominance. Third, the procedure continues to allocate the increments for current items until the constraint is violated. With the current solution, the procedure then repeats the greedy procedure for current items that are added to the items removed by the LP dominance in the previous step.Computational results show that the Smart Greedy is more effective than the previously reported methods.  相似文献   

12.
We formulate the fixed-charge multiple knapsack problem (FCMKP) as an extension of the multiple knapsack problem (MKP). The Lagrangian relaxation problem is easily solved, and together with a greedy heuristic we obtain a pair of upper and lower bounds quickly. We make use of these bounds in the pegging test to reduce the problem size. We also present a branch-and-bound (B&B) algorithm to solve FCMKP to optimality. This algorithm exploits the Lagrangian upper bound as well as the pegging result for pruning, and at each terminal subproblem solve MKP exactly by invoking MULKNAP code developed by Pisinger [Pisinger, D., 1999. An exact algorithm for large multiple knapsack problems. European Journal of Operational Research 114, 528–541]. As a result, we are able to solve almost all test problems with up to 32,000 items and 50 knapsacks within a few seconds on an ordinary computing environment, although the algorithm remains some weakness for small instances with relatively many knapsacks.  相似文献   

13.
《Optimization》2012,61(5):815-826
Using the Nicholson principle the algorithm of Shapiro for solving group knapsack problems is improved. An approximation method is derived and numerical results are presented. The solution of the approximation method will be characterized.  相似文献   

14.
We formulate and solve a dual version of the Continuous Collapsing Knapsack Problem using a geometric approach. Optimality conditions are found and an algorithm is presented. Computational experience shows that this procedure is efficient.  相似文献   

15.
This paper considers the minimization version of a class of nonconvex knapsack problems with piecewise linear cost structure. The items to be included in the knapsack have a divisible quantity and a cost function. An item can be included partially in the given quantity range and the cost is a nonconvex piecewise linear function of quantity. Given a demand, the optimization problem is to choose an optimal quantity for each item such that the demand is satisfied and the total cost is minimized. This problem and its close variants are encountered in manufacturing planning, supply chain design, volume discount procurement auctions, and many other contemporary applications. Two separate mixed integer linear programming formulations of this problem are proposed and are compared with existing formulations. Motivated by different scenarios in which the problem is useful, the following algorithms are developed: (1) a fast polynomial time, near-optimal heuristic using convex envelopes; (2) exact pseudo-polynomial time dynamic programming algorithms; (3) a 2-approximation algorithm; and (4) a fully polynomial time approximation scheme. A comprehensive test suite is developed to generate representative problem instances with different characteristics. Extensive computational experiments show that the proposed formulations and algorithms are faster than the existing techniques.  相似文献   

16.
Quadratic knapsack problem has a central role in integer and nonlinear optimization, which has been intensively studied due to its immediate applications in many fields and theoretical reasons. Although quadratic knapsack problem can be solved using traditional nonlinear optimization methods, specialized algorithms are much faster and more reliable than the nonlinear programming solvers. In this paper, we study a mixed linear and quadratic knapsack with a convex separable objective function subject to a single linear constraint and box constraints. We investigate the structural properties of the studied problem, and develop a simple method for solving the continuous version of the problem based on bi-section search, and then we present heuristics for solving the integer version of the problem. Numerical experiments are conducted to show the effectiveness of the proposed solution methods by comparing our methods with some state of the art linear and quadratic convex solvers.  相似文献   

17.
The smoothing-type algorithm has been successfully applied to solve various optimization problems. In general, the smoothing-type algorithm is designed based on some monotone line search. However, in order to achieve better numerical results, the non-monotone line search technique has been used in the numerical computations of some smoothing-type algorithms. In this paper, we propose a smoothing-type algorithm for solving the nonlinear complementarity problem with a non-monotone line search. We show that the proposed algorithm is globally and locally superlinearly convergent under suitable assumptions. The preliminary numerical results are also reported.  相似文献   

18.
In this paper, we focus on solving a class of nonlinear complementarity problems with non-Lipschitzian functions. We first introduce a generalized class of smoothing functions for the plus function. By combining it with Robinson's normal equation, we reformulate the complementarity problem as a family of parameterized smoothing equations. Then, a smoothing Newton method combined with a new nonmonotone line search scheme is employed to compute a solution of the smoothing equations. The global and local superlinear convergence of the proposed method is proved under mild assumptions. Preliminary numerical results obtained applying the proposed approach to nonlinear complementarity problems arising in free boundary problems are reported. They show that the smoothing function and the nonmonotone line search scheme proposed in this paper are effective.  相似文献   

19.
This paper presents a backward state reduction dynamic programming algorithm for generating the exact Pareto frontier for the bi-objective integer knapsack problem. The algorithm is developed addressing a reduced problem built after applying variable fixing techniques based on the core concept. First, an approximate core is obtained by eliminating dominated items. Second, the items included in the approximate core are subject to the reduction of the upper bounds by applying a set of weighted-sum functions associated with the efficient extreme solutions of the linear relaxation of the multi-objective integer knapsack problem. Third, the items are classified according to the values of their upper bounds; items with zero upper bounds can be eliminated. Finally, the remaining items are used to form a mixed network with different upper bounds. The numerical results obtained from different types of bi-objective instances show the effectiveness of the mixed network and associated dynamic programming algorithm.  相似文献   

20.
The solution of nonlinear least-squares problems is investigated. The asymptotic behavior is studied and conditions for convergence are derived. To deal with such problems in a recursive and efficient way, it is proposed an algorithm that is based on a modified extended Kalman filter (MEKF). The error of the MEKF algorithm is proved to be exponentially bounded. Batch and iterated versions of the algorithm are given, too. As an application, the algorithm is used to optimize the parameters in certain nonlinear input–output mappings. Simulation results on interpolation of real data and prediction of chaotic time series are shown. A. Alessandri and M. Cuneo were partially supported by the EU and the Regione Liguria through the Regional Programmes of Innovative Action (PRAI) of the European Regional Development Fund (ERDF). M. Sanguineti was partially supported by a grant from the PRIN project ‘New Techniques for the Identification and Adaptive Control of Industrial Systems’ of the Italian Ministry of University and Research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号