首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
染料掺杂聚吡咯微纳米管的合成及其影响因素研究   总被引:3,自引:0,他引:3  
冯江涛  韩杰  延卫 《化学学报》2009,67(4):329-334
以水溶性染料酸性红G为掺杂剂, 以三氯化铁为氧化剂, 采用无模板自组装方法制备得到了聚吡咯微/纳米管. 利用FTIR, XRD, SEM, TEM对所合成的聚吡咯微/纳米管的结构形貌进行了表征. 结果表明, 搅拌条件下, 酸性红G原位掺杂得到的聚吡咯管直径在100~910 nm之间, 管长大于50 μm. XRD表明所得聚吡咯微/纳米管为无定形态. 研究了反应时间、反应温度、吡咯浓度、掺杂剂与吡咯浓度比、氧化剂滴加速度等对聚吡咯管形貌的影响, 获得了最佳的反应条件.  相似文献   

2.
This study reports an observation of submicrometer multilamellar vesicles (MLVs) prepared by simply freeze-thawing a phospholipid dispersion at full hydration that transformed into giant vesicles (GVs) and tubules (TUs) when confined between microscope glass slides. Cover slide cleaning and surface treatment did not hamper the formation of GVs or TUs. However, when small unilamellar vesicles (SUV) were prepared or when MLVs were not confined but rather freely moved between the glass slides or when the phospholipid was in its gel phase, neither GVs nor TUs were observed. Altogether, our results suggested that MLVs would play a role as a lipid reservoir and that the liquid flow between the glass slides induces the peeling of the external bilayers, yielding the formation of tubules and giant unilamellar vesicles.  相似文献   

3.
Palladium nanotubes were fabricated by using lipid tubules as templates for the first time in a controlled manner. The positively charged lipid 1,2‐dioleoyl‐3‐trimethylammoniumpropane (DOTAP) was doped into lipid tubules to adsorb PdCl42? on the tubule surfaces for further reduction. The lipid tubule formation was optimized by studying the growing dynamics and ethanol/water ratio. The DOTAP‐doped tubules showed pH stability from 0 to 14, which makes them ideal templates for metal plating. The Pd nanotubes are open‐ended with a tunable wall thickness. They exhibited good electrocatalytic performance in ethanol. Their electrochemically active surface areas were 6.5, 10.6, and 83.2 m2 g?1 for Pd nanotubes with 77, 101, and 150 nm wall thickness, respectively. These Pd nanotubes have great potential in fuel cells. The method demonstrated also opens up a way to synthesize hollow metal nanotubes.  相似文献   

4.
This paper presents a method for positioning and aligning self-assembled tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphochloline (DC(8,9)PC) by withdrawing a patterned Au substrate from tubule solution. The patterned Au substrates with alternating bare Au stripes and thiol monolayer stripes are formed by microcontact printing. We find that the lipid tubules selectively adsorb on the bare Au stripes but show no orientation order. By withdrawing the patterned Au substrates at the direction along the stripes from tubule solution, the lipid tubules are found to be aligned along the direction of the Au stripes. The angular distribution and the density of the aligned lipid tubules depend on the withdrawal rates and the adsorption time, respectively. We conclude that forces causing tubule alignment that originate in the surface tension associated with the moving meniscus dominate alignment forces exerted by the patterned Au substrates.  相似文献   

5.
TiO2纳米管的模板法制备及表征   总被引:34,自引:0,他引:34  
TiO2纳米材料在太阳能的储存与利用、光电转换、光致变色及光催化降解大气和水中的污染物等方面具有广阔的应用前景,成为重点研究的课题之一[1~5].目前,以TiO2纳米粉体和纳米膜的研究较为普遍,而TiO2纳米管的报道不多.由于纳米管比纳米膜具有更大的比表面积,因而具有较高的吸附能力,可望提高TiO2的光电转换效率.模板法(包括多孔阳极氧化铝膜(PAA)、光刻蚀制备的纳米模板、聚碳酸酯纳米滤膜等)在制备导电聚合物、金属、碳、无机半导体等纳米管或线型材料方面已得到广泛应用[6~9],在这些模板中,PAA膜具有均匀分布的垂直于表面的相互平行的密集纳米孔,且孔径、孔间距、膜厚可以通过电化学手段加以控制[10~13].  相似文献   

6.
We report a method based on poly(dimethylsiloxane) (PDMS) stamp-assisted moving contact line to bend lipid tubules into zigzags on glass substrates. Atomic force microscopy (AFM) reveals that the zigzag lipid tubules buckle at the bent sites. The measurements of buckling heights as a function of bending angles suggest a gradual buckling mode. By imaging the zigzag tubules with AFM under different loading forces, we study the correlation between the loading force and the tubule compression. The reduced stiffness at the buckling sites of zigzag tubules suggests that lipid molecules are reorganized during the gradual buckling.  相似文献   

7.
Lipid tubules represent a hollow, cylindrical supramolecular structure formed by rolled-up lipid bilayers. We find that the lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine can be bent into a loopike shape by the shrinking contact line of droplets on self-assembled monolayers (SAMs) of 1-dodecanethiol. The persistence length of individual lipid tubules is estimated to be approximately 41 microm. The radial deformation of the lipid tubules on SAMs is studied under applied load using atomic force microscope. The stiffness of the tubules in the radial direction is found to increase when the number of the lipid bilayers in the tubule wall increases.  相似文献   

8.
金纳米粒子与聚吡咯纳米管的复合及其SERS效应研究   总被引:1,自引:0,他引:1  
通过柠檬酸盐与HAuCl4水溶液在微沸状态下反应制备的金纳米粒子因其特殊的表面与界面效应在光学、生物学和催化化学领域得到了广泛应用,而聚吡咯(PPy)具有环境稳定性好、电导率高且变化范围大、容易合成等优点,聚吡咯纳米管可用作导电材料、酶封装材料、抗静电材料,也可用于制备传感器、传动器、固体电解质电容器等。  相似文献   

9.
A first amine-templated uranyl selenate based upon highly porous uranyl selenate nanotubules, (C4H12N)14[(UO2)10(SeO4)17(H2O)], has been prepared in the room-temperature reaction of uranyl nitrate, butylamine, and H2SeO4 in aqueous solution. The structure consists of nanometer-scale tubular [(UO2)10(SeO4)17(H2O)]14- units packed in a hexagonal-type fashion. The tubules have elliptical cross section with outer dimensions of 25 x 23 A = 2.5 x 2.3 nm. The internal free crystallographic diameter of the tubules is 12.6 A = 1.26 nm, which is comparable to the effective pore size in large-pore zeolites. This finding demonstrates the possibility of nanostructures for actinides in higher oxidation states and opens up a new area of research and exploration.  相似文献   

10.
Monodispersed lipid vesicles have been used as a drug delivery vehicle and a biochemical reactor. To generate monodispersed lipid vesicles in the nano‐ to micrometer size range, an extrusion step should be included in conventional hand‐shaking method of lipid vesicle synthesis. In addition, lipid vesicles as a drug carrier still need to be improved to effectively encapsulate concentrated biomolecules such as cells, proteins, and target drugs. To overcome these limitations, this paper reports a new microfluidic platform for continuous synthesis of small‐sized (~10 μm) giant unilamellar vesicles (GUVs) containing quantum dots (QDs) as a nanosized model drug. To generate GUVs, we introduced an additional cross‐flow to break vesicles into small size. 1,2 ‐ dimyristoyl‐sn‐glycero ‐ 3 ‐ phosphocholine (DMPC) in an octanol–chloroform mixture was used in the construction of self‐assembled membrane. Consequently, we have successfully demonstrated the fabrication of monodispersed GUVs with 7?12 μm diameter containing QDs. The proposed synthesis method of cell‐sized GUVs would be highly desirable for applications such as multipurpose drug encapsulation and delivery.  相似文献   

11.
Several commercially available plastic materials were used as substrates in the fabrication of microfluid channels for biochemical analysis. Protocols for fabrication using the wire-imprinting method are reported for polystyrene, polymethylmethacrylate and a copolyester material. Channel sealing was accomplished by low-temperature bonding of a substrate of similar material; therefore, each channel was composed of a single material on all sides. The electroosmotic flow in 25-microm imprinted channels was evaluated for each substrate material. The copolyester material exhibited the highest electroosmotic flow mobility of 4.3 x 10(-4) cm2 V(-1) s(-1) which is similar to that previously reported for fused-silica capillaries. Polystyrene exhibited the lowest electroosmotic flow mobility of 1.8 x 10(-4) cm2 V(-1) s(-1). Plots of linear velocity versus applied electric field strength were linear from 100 V cm(-1) to 500 V cm(-1) indicating that heat dissipation is effective for all substrates in this range. Electroosmotic flow was reevaluated in the plastic channels following incubation in antibody solution to access the non-specific binding characteristics of a common biochemical reagent onto the substrate materials. All materials tested showed a high degree of non-specific adsorption of IgG as indicated by a decrease in the electroosmotic flow mobility in post-incubation testing.  相似文献   

12.
The nonchiral, single-chain fluorinated amphiphiles derived from dimorpholinophosphate, C(n)F(2n+1)(CH(2))(m)OP(O)[N(CH(2)CH(2))(2)O](2) (FnCmDMPs), form hollow tubular bilayer-based self-assemblies when dispersed in water, ethanol/water mixtures, and dimethylformamide. The fluorinated tubules are highly stable and sturdy. Upon heating, they transform reversibly into giant multilamellar vesicles. Uncommon U-shaped and V-shaped coiled membranes were obtained from mixtures of FnCmDMPs. Depending on conditions, fluorinated tubules can evolve with time into collapsed flattened crystallized needles. The successive steps involved in the formation and evolution of these tubules were identified, and the specific features of fluorinated chains that are relevant to membrane coiling and tubule formation are discussed.  相似文献   

13.
The extraction mechanism in liquid-liquid segmented flow-injection systems is investigated. A film is formed on the tubing wall by the phase with the highest affinity to the tubing material. This film surrounds the segments of the other phase. To a great extent the extraction takes place at the interface of this film. The extraction rate is influenced by the segment length, the inner diameter of the tubing and the flow velocity. Short segments, small inner diameter and high linear flow velocity lead to a high extraction rate. These findings indicate that miniaturization of the flow system will lead to faster extraction and to decreased sample-zone broadening.  相似文献   

14.
The dispersion mechanism in flow-injection extraction systems has been investigated. The phase with the highest affinity for the tubing material forms a thin film on the wall (e.g., 0.055 mm in a 0.7-mm i.d. PTFE tube with pentanol/water at a flow velocity of 11 cm s?1). The film thickness increases linearly with increasing flow velocity and can be related to the viscosity/interfacial tension ratio in such a way that a low ratio indicates a thin film. The analyte is extracted into the film and into the adjacent segments. The film is stationary relative to the moving segments and this results in a backward transport of analyte molecules giving rise to dispersion. The thicker the film, the larger the dispersion. By decreasing the tube diameter and the flow velocity, lower dispersion results. Minimum dispersion is obtained for systems in which the phase carrying the analyte does not form the film.  相似文献   

15.
Lipid microtubules with wound ribbon features were fabricated by self-assembling method, and the deposition patterns of colloidal Pd particles on tubular template were investigated. The result indicates that colloidal Pd nanoparticles are preferentially decorated on the helical markings in the interior and on the exterior of preformed tubule and to the edge of loosely helical ribbons to obtain helical deposition features. The multi-bilayer microstructure of tubules can be marked by fine Pd nanoparticles deposited at the edge of helical ribbon. There are the site-specific interactions between lipid tubular template and colloidal Pd particles at the helical edge. A new route was illustrated that colloidal Pd particles firstly attach at the edge of thin flat membranes, and then thin membranes roll up and reassemble into tubule together with particles to form helical deposition patterns. The site-specific deposition of Pd is unbeneficial to obtain the homogeneous metal film on tubules, but it can be utilized to reveal the different chemical nature of lipid molecular assembly.  相似文献   

16.
Lipid tubules formed by rolled-up bilayer sheets have shown promise in drug delivery systems, nanofluidics, and microelectronics. Here we report a method for directly printing lipid tubules on substrates. Preformed lipid tubules of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine are aligned in the recessed channels of a thin poly(dimethylsiloxane) (PDMS) stamp. The aligned lipid tubules then serve as an "ink" for microcontact printing. We demonstrate that two-dimensional (2-D) arrays of aligned lipid tubules can be transferred onto planar, patterned, and curved substrates from the recessed channels of the PDMS stamp by bringing the tubule-inked PDMS stamp into contact with these substrates. We show that the 2-D array of aligned lipid tubules can be transcribed into a 2-D array of aligned silica cylinders through templated sol-gel condensation of tetraethoxysilane.  相似文献   

17.
The self-assembly of biological amphiphiles has proved a fascinating topic in recent years, the hollow cylindrical lipid tubule morphology being of particular interest due to its potential applications in "soft" microtechnologies. Lateral coexistence of liquid-ordered (lo) and liquid-disordered (ld) phases, which may resemble raft formation in cell membranes, was investigated in lipid tubules, prepared from 1,2-dioleoyl-sn-glycero-3-phosphocholine, egg-sphingomyelin, and cholesterol. Fluorescence microscopy shows that the appearance of micrometer-scale lo domains in the lipid tubule is not an intrinsic phase behavior of the system but a consequence of photoinduced lipid peroxidation. Most interestingly, new photoinduced bilayer structures: lipid discs, essentially stable flattened liposomes, were observed for the first time in a model membrane system. This investigation not only aids in our understanding of lipid sorting phenomena in cell membranes but also demonstrates how control of this process may provide a route to the generation of new, functional structures.  相似文献   

18.
Lipid bilayers were deposited inside the 0.2 microm pores of anodic aluminum oxide (AAO) filters by extrusion of multilamellar liposomes and their properties studied by 2H, 31P, and 1H solid-state NMR. Only the first bilayer adhered strongly to the inner surface of the pores. Additional layers were washed out easily by a flow of water as demonstrated by 1H magic angle spinning NMR experiments with addition of Pr3+ ions to shift accessible lipid headgroup resonances. A 13 mm diameter Anopore filter of 60 microm thickness oriented approximately 2.5 x 10(-7) mol of lipid as a single bilayer, corresponding to a total membrane area of about 500 cm2. The 2H NMR spectra of chain deuterated POPC are consistent with adsorption of wavy, tubular bilayers to the inner pore surface. By NMR diffusion experiments, we determined the average length of those lipid tubules to be approximately 0.4 microm. There is evidence for a thick water layer between lipid tubules and the pore surface. The ends of tubules are well sealed against the pore such that Pr3+ ions cannot penetrate into the water underneath the bilayers. We successfully trapped poly(ethylene glycol) (PEG) with a molecular weight of 8000 in this water layer. From the quantity of trapped PEG, we calculated an average water layer thickness of 3 nm. Lipid order parameters and motional properties are unperturbed by the solid support, in agreement with existence of a water layer. Such unperturbed, solid supported membranes are ideal for incorporation of membrane-spanning proteins with large intra- and extracellular domains. The experiments suggest the promise of such porous filters as membrane support in biosensors.  相似文献   

19.
West J  Manz A  Dittrich PS 《Lab on a chip》2008,8(11):1852-1855
In this paper we describe a simple and inexpensive microfluidic system for the production of lipid tubules and vesicles. The system incorporates a central microporous membrane for interfacing lipid films with aqueous flows. Hydrodynamic drag was used for the parallel elongation of high axial ratio lipid tubules with uniform 1.5 +/- 0.5 microm diameters. Alternatively, electrokinetic operation was used for the rapid and continuous production of vast numbers of lipid vesicles with diameters ranging from 1 to 3 microm.  相似文献   

20.
Self-assembled lipid tubules with crystalline bilayer walls are promising candidates for controlled drug delivery vehicles on the basis of their ability to release preloaded biological molecules in a sustained manner. While a previous study has shown that the release rate of protein molecules from lipid tubules depends on the associated molecular mass, suggesting that the pertinent diffusion follows the well-known Stokes-Einstein relationship, only a few attempts have been made toward investigating the details of molecular diffusion in the tubule interior. Herein, we have characterized the diffusion rates of several molecules encapsulated in lipid tubules formed by 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) using the techniques of fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). Our results show that the mobility of these molecules depends not only on their positions in the DC8,9PC tubules but also on their respective concentrations. While the former indicates that the interior of the DC8,9PC tubules is heterogeneous in terms of diffusion, the latter further highlights the possibility of engineering specific conditions for achieving sustained release of a "drug molecule" over a targeted period of time. In addition, our FCS results indicate that the molecular diffusions inside the crystalline bilayer walls of the DC8,9PC tubules strongly deviate from the normal, stochastic processes, with features characterizing not only anomalous subdiffusions but also motions that are superdiffusive in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号