首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complexes of Pd(II), Cu(II), Ni(II), and Zn(II) with alkylated dipyrrins (Hdpm) were synthesized and characterized by physicochemical and spectroscopic methods. Protolytic dissociation kinetics of these complexes in benzene in the presence of acetic and trichloroacetic acid was studied. A protonated dipyrrin is the reaction product of protolytic dissociation of the complexes in acid solutions. The observed and true dissociation rate constants, as well as activation reaction parameters, were calculated. Kinetic models of the processes are proposed, and the patterns of influence of the ligand nature on dissociation kinetics were determined. The Pd(II) complexes proved to be much more stable than other those of the other metals, according to the results of the kinetic studies. The lability of the complexes strongly depends on the length and position of the alkyl substituent of the ligand. The dissociation of the Ni(II) complex gives a heteroligand complex at low concentrations of acid, but the complex undergoes full protolytic dissociation at higher concentrations of acid. The dissociation of the complex of Cu(II) is an equilibrium process, involving formation of the protonated form of the ligand.  相似文献   

2.
The trends of kinetic resistance of borofluoride complexes of alkyl- and sulfo-substituted dipyrrolylmethene (Bodipy) to protolytic and solvoprotolytic dissociation in organic solvents and aqueous solutions are studied. It is established that among dipyrrolylmethene complexes with d elements, Bodipy is notable for its superresistance to acids. The rate of the dissociation reaction increases with increasing acidity of protonating mixtures or decreasing effective charge of the coordinating nitrogen atoms of the ligand. Dissociation of the complexes occurs in accordance with a second-order rate equation. A kinetic model of the process is proposed; its kinetic and activation parameters are determined. The energy profiles of the initial stages of protolytic dissociation reactions are calculated using quantum-chemical methods for two suggested variants of the transient state; the energetically preferable pathway is recognized.  相似文献   

3.
The synthesis, characterization, (1)H NMR, optical absorption and fluorescent properties of a series of amphiphilic Schiff-base bis(salicylaldiminato)zinc(II) complexes are reported. Detailed (1)H NMR, DOSY NMR, optical absorption and fluorescence spectroscopy studies indicate the existence of aggregate species in solutions of non-coordinating solvents. The degree of aggregation is related to the nature of the bridging diamine. Chloroform solutions of complexes where the bridging diamine contains a naphthalene or the pyridine nucleus are always characterized by the presence of defined dimer aggregates, whereas oligomeric aggregates are likely formed by complexes where the bridging diamine contains a benzene ring. In coordinating solvents or in the presence of coordinating species, a complete deaggregation of the complexes occurs, because of the axial coordination to the Zn(II) ion, accompanied by considerable changes in the (1)H NMR and optical absorption spectra. The effect of the alkyl chains length seems to play a minor role in the aggregation properties, as noticed by (1)H NMR data, optical absorption and fluorescence spectra, which remain almost unaltered on changing the chain length.  相似文献   

4.
The spectral properties (UV/Vis, IR, 1H NMR) and stability of diverse forms of 5,10,15,20-tetraphenyl-21H,23H-porphine rhenium(V) complexes in neutral and protolytic solvents have been studied. Quantitative characteristics have been obtained for the reactions of formation and interconversion of the μ-oxo dimeric and monomeric rhenium(V) complex species in the benzene-AcOH system and dissociation at the coordination center of the H+-associated form of the monomeric rhenium(V) complex in mixed H2O-H2SO4 solvents in a wide range of component concentrations. It has been shown that the stability of the coordination center of the rhenium(V) complexes sharply depends on the nature of a second acido ligand, in addition to the coordinated porphyrin.  相似文献   

5.
The spectral, fluorescent, and photochemical properties of new merocyanines containing nitrile groups as acceptors have been studied. Positive solvatochromism is observed for most of these compounds; however, for the dye containing three nitrile groups as acceptors—polyenic aminotrinitrile—negative solvatochromism is observed: the absorption spectrum is shifted to shorter wavelengths with increasing the solvent polarity. In all solvents used, the fluorescence and fluorescence excitation spectra of the merocyanines almost do not depend on the excitation and fluorescence registration wavelengths, respectively. Using the flash photolysis method, the formation of photoisomers of the merocyanines has been detected and the kinetics of their decay in solvents of different polarity has been studied. Backward (dark) isomerization of the photoisomers has been shown to take place more slowly in nonpolar solvents.  相似文献   

6.
Photochemical and photophysical data are reported for a series of fac-[Mn(CO)(3)(phen)(Im-R)](SO(3)CF(3)) complexes, where phen is 1,10-phenanthroline and Im is imidazole. Intraligand and metal-to-ligand charge transfer (MLCT) transitions are observed in the electronic absorption spectra of these complexes and are sensitive to the nature of the ligand substituent. At room temperature the emission spectra show a clear progression from broad structureless MLCT to highly structured pi-pi* emission on going from R = -H, -CH(3), -C(6)H(5), to -Metro, where Metro is 2-methyl-5-nitroimidazole. Even at low temperatures the latter complexes show only the pi-pi* emission. The trend in the photophysical properties found in the emission spectra parallels the changes in the photochemical properties with the electron-donating or electron-withdrawing power of the substituent on the imidazole ligand. Although MLCT irradiation of the complexes with R = -H, -CH(3) leads to the mer-[Mn(CO)(3)(phen)(Im-R)](+) isomers, the complexes with the imidazole ligand substituted by -C(6)H(5) or -Metro release the Im-R ligand and produce the stereoretentive fac-[Mn(CO)(3)(phen)(S)](+) complexes. The stereochemical fate and mechanistic implications of the photolysis reactions are discussed in terms of the nature of ligand substitution.  相似文献   

7.
Protolytic dissociation of copper(II) and nickel(II) dipyrrolylmethenates in benzene solutions of acetic acid has been studied. The results have completed the knowledge of kinetics of dipyrrolylmethene complexes dissociation in acidic medium. The effect of the nature of complex forming atom, ligand, and other factors on the complexes kinetic stability has been analyzed.  相似文献   

8.
The luminescence and absorption spectra of some metal complexes of new tetraphenylporphyrin derivatives containing a chelating group with a heavy atom in the ligand structure were studied and compared with the properties of the zinc complex of unsubstituted tetraphenylporphyrin. The quantum yields of fluorescence and phosphorescence of liquid and frozen solutions of these compounds were measured. The life-times of delayed emission have been estimated, and the nature of bands in the absorption and luminescence spectra of the complexes and their relation with the structure are discussed.  相似文献   

9.
The absorption and fluorescence spectra of twelve 7-aminocoumarin derivatives have been studied with methanol and chloroform as solvents. Electronic transitions to nπ* states have been traced. The effect of different substituents on the nitrogen was easily observed in the fluorescence spectra. Fluorescence quantum yields and oscillator strengths were evaluated. The role of hydrogen bonding on emission maxima, quantum yields and photolytic dissociation were discussed.  相似文献   

10.
The electronic absorption spectra of some 6-chloro,2-pyridyl hydrazones are studied in seven organic solvents of different polarity. The absorption bands are assigned to the corresponding electronic transitions and the effect of solvent parameters on the charge transfer energy (E(CT)) is investigated. The spectra in buffer solutions of varied pH are also studied and utilized for the determination of the acid dissociation constants of the compounds under study. The fluorescence spectra were recorded for one of the studied compounds in six solvents, the solvent effect on the photoquantum yield and spectral pattern are also studied. Bands of diagnostic importance in the IR spectra and signals in the (1)H NMR spectra are assigned. The results of the present investigation are supported by some MO calculations using the atom super position and electron delocalization molecular orbital theory (ASED-MO) and Gaussian 94 program. The geometry is optimized using the PM3 method.  相似文献   

11.
The synthesis, linear photophysical properties, two-photon absorption (2PA), excited-state transient absorption, and gain spectroscopy of a new fluorene derivative tert-butyl 4,4'-(4,4' (1E,1'E)-2,2'-(9,9-bis(2- (2-ethoxyethoxy)ethyl)-9H-fluorene-2,7-diyl)bis(ethene-2,1-diyl)bis(4,1 phenylene)]dipiperazine-1-carboxylate (1) are reported. The steady-state linear absorption and fluorescence spectra, along with excitation anisotropy, fluorescence lifetimes, and photochemical stability of 1 were investigated in a number of organic solvents at room temperature. The 2PA spectra of 1 with a maximum cross-section of ~ 300 GM were obtained with a 1 kHz femtosecond laser system using open-aperture Z-scan and two-photon-induced fluorescence methods. The transient excited-state absorption (ESA) and gain kinetics of 1 were investigated by a femtosecond pump-probe methodology. Fast relaxation processes (~1-2 ps) in the gain and ESA spectra of 1 were revealed in ACN solution, attributable to symmetry-breaking effects in the first excited state. Efficient superfluorescence properties of 1 were observed in a nonpolar solvent under femtosecond excitation. One- and two-photon fluorescence microscopy imaging of HCT 116 cells incubated with probe 1 was accomplished, suggesting the potential of this new probe in two-photon fluorescence microscopy bioimaging.  相似文献   

12.
(5,15-Bis(2-thienyl)-and 5,15-diphenyl-3,7,13,17-tetramethyl-2,8,12,18-tetra-n-butyl-21H,23H-porphinato)copper(II) complexes were synthesized and the basicity, absorption spectra (UV-Vis, IR, 1H NMR) of the macrocyclic ligands and the stability of the complexes in AcOH-H2SO4 mixed solvents were studied with the aim to reveal the effect of 2-thienyl substituent on the properties of substituted porphyrins. Data on kinetics were obtained, reaction mechanism of complex dissociation was reasoned, and the effect of functional substitution on the properties of macrocyclic bases and their complexes with copper(II) were determined.  相似文献   

13.
Two kinds of nickel(II) and copper(II) beta-diketone complexes derived from thenoyltrifluoroacetone ligand with blue-violet light absorption were synthesized by reacting free ligand and different metal(II) ions in sodium methoxide solution. Their structures were postulated based on elemental analysis, ESI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films on K9 glass substrates were prepared using the spin-coating method. Their solubility in organic solvents, absorption properties of thin film and thermal stability of these complexes were evaluated.  相似文献   

14.
Some important and essential features of absorption and fluorescence spectra of prodan in homogeneous and binary mixes are studied. According to results obtained from experimental and quantum-chemical researches we show that the absorption spectrum of prodan in nonpolar solvent within 25,000-50,000 cm(-1) is formed by eight electronic transitions. Quantum-chemical calculations are performed in the geometry of both the ground and exited states of prodan. The rate constants of photoprocesses and the quantum yield of fluorescence are determined for the prodan and its complexes with water. A dramatic shift of the fluorescence band at changing from nonpolar solvent to isopropyl alcohol and water is explained. The roles of general solvent effects and specific interactions are separated. According to values of molecular electrostatic potential and charges on atoms the centers of possible interaction of prodan with a solvent are obtained. Possible models of prodan complexes in water are offered. The results of quantum-chemical calculation for offered complexes of prodan in water are compared with those for the free prodan molecule. The presence of the second band (about 24,000 cm(-1)) in fluorescence spectra of prodan in isopropyl (ethyl) alcohol-water solvents is explained.  相似文献   

15.
Benzidine is an aromatic base of importance in industry. It represents a serious pollutant in many industrial effluents and its photodegradation is of great interest. The mechanism of photo-chemical decomposition of benzidine in different halomethane solvents in addition to the corresponding UV absorption spectra and fluorescence emission spectra are discussed. The photochemical quantum yields (phiC lambda ex = 254 nm) of benzidine in halomethanes is dependent upon the halogen content in the solvent. This effect may be explained by the assumption that free radicals are formed during photolysis of these solvents followed by the abstraction of electrons from a benzidine molecule forming macroradicals of the latter. Both mono- and di-radical benzidine cations have been detected by different techniques. The well known electron absorption peak at 283 nm is characteristic of neutral benzidine while those observed at ca. 370 and 565 nm are assigned to the blue-monoradical cation and yellow-diradical cation, respectively. The blue-monoradical cation has been isolated after irradiation as a blue precipitate. A comparison between neutral benzidine and the blue monoradical cation are made using both IR and differential thermal analysis (DTA) techniques. The fluorescence quenching of solutions of benzidine in inert solvents using halomethanes have been studied. The results obtained are interpreted in terms of a diffusional quenching mechanism.  相似文献   

16.
Step-scan Fourier-transform infrared spectroscopy (ssFTIR) simultaneously provides the spectroscopic and kinetic information of a given reaction. ssFTIR has been extensively employed to acquire the transient absorption and emission spectra in gas phase for identifying unstable species, for example, various Criegee intermediates, and elucidating the dynamics and kinetics of the reaction, such as the molecular elimination dynamics of haloalkenes and the bimolecular reactions involving chlorine atoms and singlet oxygen atoms. In addition to gaseous studies, ssFTIR has been also utilized to record the time-resolved difference spectra of the photochemical reactions in condensed phases, such as the photolysis of metal–ligand complexes, photocycles of the retinal proteins, coordination capability of solvents to unstable transient species, chemical reactions of atmosphere-related molecules in aqua, and the exciplex dynamics of organic light emitting materials. Moreover, my group has pioneered the recording of the transient thermal infrared emission of gold nanostructures upon photoexcitation. The experimental setups and the working principles for probing the time-resolved infrared absorption and emission in condensed phases will be revealed and a number of studies on chemical, biological, and materials systems will be described. These reported results demonstrate that ssFTIR is a versatile tool for exploring the properties of novel materials and photoreactions in condensed phases.  相似文献   

17.
The multi-banded fluorescence and laser properties of 11 new amino- and tosylamino derivatives of 2,5-di(phenyl)-1,3,4-oxadiazole and oxadiazole in various solvents at 293 K are reported. All the compounds investigated possess intra-molecular hydrogen quasi-bond (IHB) of 4.6-5.2 kcal mol(-1) in the ground state. In the excited state they can undergo protolytic dissociation or intra-molecular photon-initiated transfer of proton and reveal anomalous fluorescence which cannot be explained within the framework of the Kasha and Kasha-Vavilov rules. Depending upon the excitation wavelength, solvent, concentration and pH of the medium, the compounds studied show a single, double, triple or even a four-banded fluorescence, which has not been reported earlier. The nature of multi-banded fluorescence is explained in terms of the possible photochromic processes in excited states. Quantum yields and decay times of the different fluorescence bands are reported. Anomalous dependence of quantum yield upon concentration of the solution is observed. Laser properties of the compounds studied are carefully tested. Laser action based on the fluorescence of the so-called bi-radical molecules is reported. Various possible arrangements of singlet and triplet levels of compounds investigated are discussed.  相似文献   

18.
Ground and excited state inter- and intramolecular proton transfer reactions of a new o-hydroxy Schiff base, 7-ethylsalicylidenebenzylamine (ESBA) have been investigated by means of absorption, emission and nanosecond spectroscopy in different protic solvents at room temperature and 77 K. The excited state intramolecular proton transfer (ESIPT) is evidenced by a large Stokes shifted emission (approximately 11000 cm(-1)) at a selected excited energy in alcoholic solvents. Spectral characteristics obtained reveal that ESBA exists in more than one structural form in most of the protic solvents, both in the ground and excited states. From the nanosecond measurements and quantum yield of fluorescence we have estimated the decay rate constants, which are mainly represented by nonradiative decay rates. At 77 K the fluorescence spectra are found to be contaminated with phosphorescence spectra in glycerol and ethylene glycol. It is shown that the fluorescence intensity and nature of the species present are dependent upon the excitation energy.  相似文献   

19.
The formation and dissociation kinetics of a series of triethylsilanol/solvent weakly hydrogen bonding complexes with enthalpies of formation ranging from -1.4 to -3.3 kcal/mol are measured with ultrafast two-dimensional infrared (2D IR) chemical exchange spectroscopy in liquid solutions at room temperature. The correlation between the complex enthalpies of formation and dissociation rate constants can be expressed with an equation similar to the Arrhenius equation. The experimental results are in accord with previous observations on eight phenol/solvent complexes with enthalpies of formation from -0.6 to -2.5 kcal/mol. It was found that the inverse of the solute-solvent complex dissociation rate constant is linearly related to exp(-DeltaH0/RT) where DeltaH0 is the complex enthalpy of formation. It is shown here, that the triethylsilanol-solvent complexes obey the same relationship with the identical proportionality constant, that is, all 13 points, five silanol complexes and eight phenol complexes, fall on the same line. In addition, features of 2D IR chemical exchange spectra at long reaction times (spectral diffusion complete) are explicated using the triethylsilanol systems. It is shown that the off-diagonal chemical exchange peaks have shapes that are a combination (outer product) of the absorption line shapes of the species that give rise to the diagonal peaks.  相似文献   

20.
The fluorescence spectra were studied and the quantum yields of the fluorescence of a number of cationic-anionic polymethine dyes were measured in polar, low-polarity, and nonpolar solvents. It was shown that the fluorescence spectra of cationic-anionic dyes in polar solvents, like the absorption spectra, represent the sum of the fluorescence spectra of the corresponding cationic and anionic dyes. For dyes in which the absorption bands of the anion and cation are close and a new short-wave band arises in the ion pairs, excitation into this band virtually does not lead to fluorescence, which is a consequence of the forbidden nature of the long-wave transition that arises as a result of the interaction of the chromophores. For a number of cationic-anionic dyes in ion pairs an energy transfer is observed: When an ion possessing short-wave absorption is excited, an ion with long-wave absorption fluoresces.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 117977 Moscow. Translated fromIzvestiya Akademii Nauk, Seriya Khimicheskaya, No. 11, pp. 2532–2539, November, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号