首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
Summary. In this paper we deal with the extension of the following functional equation¶¶ f (x) = M (f (m1(x, y)), ..., f (mk(x, y)))        (x, y ? K) f (x) = M \bigl(f (m_{1}(x, y)), \dots, f (m_{k}(x, y))\bigr) \qquad (x, y \in K) , (*)¶ where M is a k-variable operation on the image space Y, m1,..., mk are binary operations on X, K ì X K \subset X is closed under the operations m1,..., mk, and f : K ? Y f : K \rightarrow Y is considered as an unknown function.¶ The main result of this paper states that if the operations m1,..., mk, M satisfy certain commutativity relations and f satisfies (*) then there exists a unique extension of f to the (m1,..., mk)-affine hull K* of K, such that (*) holds over K*. (The set K* is defined as the smallest subset of X that contains K and is (m1,..., mk)-affine, i.e., if x ? X x \in X , and there exists y ? K* y \in K^* such that m1(x, y), ?, mk(x, y) ? K* m_{1}(x, y), \ldots, m_{k}(x, y) \in K^* then x ? K* x \in K^* ). As applications, extension theorems for functional equations on Abelian semigroups, convex sets, and symmetric convex sets are obtained.  相似文献   

2.
Let n be an integer and Bn \mathcal B_n be the variety defined by the law [xn,y][x,yn]-1 = 1.¶ Let Bn* \mathcal B_n^* be the class of groups in which for any infinite subsets X, Y there exist x ? X x \in X and y ? Y y \in Y such that [xn,y][x,yn]-1 = 1. For $ n \in {\pm 2, 3\} $ n \in {\pm 2, 3\} we prove that¶ Bn* = Bn èF \mathcal B_n^* = \mathcal B_n \cup \mathcal F , F \mathcal F being the class of finite groups. Also for $ n \in {- 3, 4\} $ n \in {- 3, 4\} and an infinite group G which has finitely many elements of order 2 or 3 we prove that G ? Bn* G \in \mathcal B_n^* if and only if G ? Bn G \in \mathcal B_n .  相似文献   

3.
We compare two concepts from distance geometry of finite sets: quasi-isometry and isometry. We show that for every n 3 5 n\geq5 there exist sets of n points in \mathbbRn-1 \mathbb{R}^{n-1} that are quasi-isometric and not isometric. By contrast, for finite sets in S1 we show that under some additional hypotheses, quasi-isometric sets are isometric.  相似文献   

4.
Let a\alpha and b\beta be bounded measurable functions on the unit circle T. The singular integral operator Sa, bS_{\alpha ,\,\beta } is defined by Sa, b f = aPf + bQf(f ? L2 (T))S_{\alpha ,\,\beta } f = \alpha Pf + \beta Qf(f \in L^2 (T)) where P is an analytic projection and Q is a co-analytic projection. In the previous paper, the norm of Sa, bS_{\alpha ,\,\beta } was calculated in general, using a,b\alpha ,\beta and a[`(b)] + H\alpha \bar {\beta } + H^\infty where HH^\infty is a Hardy space in L (T).L^\infty (T). In this paper, the essential norm ||Sa, b ||e\Vert S_{\alpha ,\,\beta } \Vert _e of Sa, bS_{\alpha ,\,\beta } is calculated in general, using a[`(b)] + H + C\alpha \bar {\beta } + H^\infty + C where C is a set of all continuous functions on T. Hence if a[`(b)]\alpha \bar {\beta } is in H + CH^\infty + C then ||Sa, b ||e = max(||a|| , ||b|| ).\Vert S_{\alpha ,\,\beta } \Vert _e = \max (\Vert \alpha \Vert _\infty , \Vert \beta \Vert _\infty ). This gives a known result when a, b\alpha , \beta are in C.  相似文献   

5.
Let R be a right near-ring with identity and Mn(R) be the near-ring of n 2 n matrices over R in the sense of Meldrum and Van der Walt. In this paper, Mn(R) is said to be s\sigma-generated if every n 2 n matrix A over R can be expressed as a sum of elements of Xn(R), where Xn(R)={fijr | 1\leqq i, j\leqq n, r ? R}X_n(R)=\{f_{ij}^r\,|\,1\leqq i, j\leqq n, r\in R\}, is the generating set of Mn(R). We say that R is s\sigma-generated if Mn(R) is s\sigma-generated for every natural number n. The class of s\sigma-generated near-rings contains distributively generated and abstract affine near-rings. It is shown that this class admits homomorphic images. For abelian near-rings R, we prove that the zerosymmetric part of R is a ring, so the class of zerosymmetric abelian s\sigma-generated near-rings coincides with the class of rings. Further, for every n, there is a bijection between the two-sided subgroups of R and those of Mn(R).  相似文献   

6.
We consider systems of partial differential equations with constant coefficients of the form ( R(Dx, Dy)f = 0, P(Dx)f = g), f,g ? C(W),\big ( R(D_x, D_y)f = 0, P(D_x)f = {g}\big ), f,g \in {C}^{\infty}(\Omega),, where R (and P) are operators in (n + 1) variables (and in n variables, respectively), g satisfies the compatibility condition R(Dx, Dy)g = 0  and  W ì \Bbb Rn+1R(D_x, D_y){g} = 0 \ {\rm and} \ \Omega \subset {\Bbb R}^{n+1} is open. Let R be elliptic. We show that the solvability of such systems for certain nonconvex sets W\Omega implies that any localization at ¥\infty of the principle part Pm of P is hyperbolic. In contrast to this result such systems can always be solved on convex open sets W\Omega by the fundamental principle of Ehrenpreis-Palamodov.  相似文献   

7.
Let (M,g) be a connected compact manifold, C3 smooth and without boundary, equipped with a Riemannian distance d(x,y). If s : M ? M s : M \to M is merely Borel and never maps positive volume into zero volume, we show s = t °u s = t \circ u factors uniquely a.e. into the composition of a map t(x) = expx[-?y(x)] t(x) = {\rm exp}_x[-\nabla\psi(x)] and a volume-preserving map u : M ? M u : M \to M , where y: M ? \bold R \psi : M \to {\bold R} satisfies the additional property that (yc)c = y (\psi^c)^c = \psi with yc(y) :=inf{c(x,y) - y(x) | x ? M} \psi^c(y) :={\rm inf}\{c(x,y) - \psi(x)\,\vert\,x \in M\} and c(x,y) = d2(x,y)/2. Like the factorization it generalizes from Euclidean space, this non-linear decomposition can be linearized around the identity to yield the Hodge decomposition of vector fields.¶The results are obtained by solving a Riemannian version of the Monge--Kantorovich problem, which means minimizing the expected value of the cost c(x,y) for transporting one distribution f 3 0 f \ge 0 of mass in L1(M) onto another. Parallel results for other strictly convex cost functions c(x,y) 3 0 c(x,y) \ge 0 of the Riemannian distance on non-compact manifolds are briefly discussed.  相似文献   

8.
Given a binary relation R between the elements of two sets X and Y and a natural number k, it is shown that there exist k injective maps f1, f2,...,fk: X \hookrightarrow Y X \hookrightarrow Y with # {f1(x), f2(x),...,fk(x)}=k    and    (x,f1(x)), (x, f2(x)),...,(x, fk(x)) ? R \# \{f_1(x), f_2(x),...,f_k(x)\}=k \quad{\rm and}\quad (x,f_1(x)), (x, f_2(x)),...,(x, f_k(x)) \in R for all x ? X x \in X if and only if the inequality k ·# A £ ?y ? Y min(k, #{a ? A | (a,y) ? R}) k \cdot \# A \leq \sum_{y \in Y} min(k, \#\{a \in A \mid (a,y) \in R\}) holds for every finite subset A of X, provided {y ? Y | (x,y) ? R} \{y \in Y \mid (x,y) \in R\} is finite for all x ? X x \in X .¶Clearly, as suggested by this paper's title, this implies that, in the context of the celebrated Marriage Theorem, the elements x in X can (simultaneously) marry, get divorced, and remarry again a partner from their favourite list as recorded by R, for altogether k times whenever (a) the list of favoured partners is finite for every x ? X x \in X and (b) the above inequalities all hold.¶In the course of the argument, a straightforward common generalization of Bernstein's Theorem and the Marriage Theorem will also be presented while applications regarding (i) bases in infinite dimensional vector spaces and (ii) incidence relations in finite geometry (inspired by Conway's double sum proof of the de Bruijn-Erdös Theorem) will conclude the paper.  相似文献   

9.
We prove a Helly-type theorem for the family of all k-dimensional affine subsets of a Hilbert space H. The result is formulated in terms of Lipschitz selections of set-valued mappings from a metric space (M,r) ({\cal M},\rho) into this family.¶Let F be such a mapping satisfying the following condition: for every subset M¢ ì M {\cal M'} \subset {\cal M} consisting of at most 2k+1 points, the restriction F|M F|_{\cal M'} of F to M¢ {\cal M'} has a selection fM (i.e. fM(x) ? F(x) for all x  ? M¢) f_{\cal M'}\,({\rm i.e.}\,f_{\cal M'}(x) \in F(x)\,{\rm for\,all}\,x\,\in {\cal M'}) satisfying the Lipschitz condition ||fM(x) - fM(y)||  £ r(x,y ), x,y ? M¢ \parallel f_{\cal M'}(x) - f_{\cal M'}(y)\parallel\,\le \rho(x,y ),\,x,y \in {\cal M'} . Then F has a Lipschitz selection f : M ? H f : {\cal M} \to H such that ||f(x) - f(y) ||  £ gr(x,y ), x,y ? M \parallel f(x) - f(y) \parallel\,\le \gamma \rho (x,y ),\,x,y \in {\cal M} where g = g(k) \gamma = \gamma(k) is a constant depending only on k. (The upper bound of the number of points in M¢ {\cal M'} , 2k+1, is sharp.)¶The proof is based on a geometrical construction which allows us to reduce the problem to an extension property of Lipschitz mappings defined on subsets of metric trees.  相似文献   

10.
Suppose that $1 < p < \infty $1 < p < \infty , q=p/(p-1)q=p/(p-1), and for non-negative f ? Lp(-¥ ,¥)f\in L^p(-\infty\! ,\infty ) and any real x we let F(x)-F(0)=ò0xf(tdtF(x)-F(0)=\int _0^xf(t)\ dt; suppose in addition that ò-¥ F(t)exp(-|t|) dt=0\int\limits _{-\infty }^\infty F(t)\exp (-|t|)\ dt=0. Moser's second one-dimensional inequality states that there is a constant CpC_p, such that ò-¥ exp[a |F(x)|q-|x|]  dxCp\int\limits _{-\infty }^\infty \exp [a |F(x)|^q-|x|] \ dx\le C_p for each f with ||f||p £ 1||f||_p\le 1 and every a £ 1a\le 1. Moreover the value a = 1 is sharp. We replace the operation connecting f with F by a more general integral operation; specifically we consider non-negative kernels K(t,x) with the property that xK(t,x) is homogeneous of degree 0 in t, x. We state an analogue of the inequality above for this situation, discuss some applications and consider the sharpness of the constant which replaces a.  相似文献   

11.
Let M be a finitely generated faithful module over a noetherian ring R of dimension d < ¥ \infty and let \mathfrak a \subseteqq R {\mathfrak a} \subseteqq R be an ideal. We describe the (finite) set SuppR(H\mathfrak ad (M)) = AssR(H\mathfrak ad (M)) \textrm{Supp}_R(H_{\mathfrak a}^d (M)) = \textrm{Ass}_R(H_{\mathfrak a}^d (M)) of primes associated to the highest local cohomology module H\mathfrak ad (M) H_{\mathfrak a}^d (M) in terms of the local formal behaviour of \mathfrak a {\mathfrak a} . If R is integral and of finite type over a field, SuppR(H\mathfrak ad (M)) \textrm{Supp}_R(H_{\mathfrak a}^d (M)) is the set of those closed points of X = Spec(R) whose fibre under the normalization morphism n: X¢? X \nu : X' \rightarrow X contains points which are isolated in n-1(Spec(R/\mathfrak a)) \nu^{-1}(\textrm{Spec}(R/{\mathfrak a})) .  相似文献   

12.
In this article we determine the irreducible ordinary characters cr \chi_r of a finite group G occurring in a transitive permutation representation (1M )G of a given subgroup M of G, and their multiplicities mr = ((1M)G, cr) 1 0 m_r = ((1_{M})^G, \chi_r) \neq 0 by means of a new explicit formula calculating the coefficients ark of the central idempotents er = ?k=1d ark Dk e_r = \sum\limits_{k=1}^{d} a_{rk} D_k in the intersection algebra B \cal B of (1M )G generated by the intersection matrices Dk corresponding to the double coset decomposition G = èk=1d Mxk M G = \bigcup\limits_{k=1}^{d} Mx_{k} M .¶Furthermore, an explicit formula is given for the calculation of the character values cr(x) \chi_{r}(x) of each element x ? G x \in G . Using this character formula we obtain a new practical algorithm for the calculation of a substantial part of the character table of G.  相似文献   

13.
Let r\mathbbR \rho_{\mathbb{R}} be the classical Schrödinger representation of the Heisenberg group and let L \Lambda be a finite subset of \mathbbR ×\mathbbR \mathbb{R} \times \mathbb{R} . The question of when the set of functions {t ? e2 pi y t f(t + x) = (r\mathbbR(x, y, 1) f)(t) : (x, y) ? L} \{t \mapsto e^{2 \pi i y t} f(t + x) = (\rho_{\mathbb{R}}(x, y, 1) f)(t) : (x, y) \in \Lambda\} is linearly independent for all f ? L2(\mathbbR), f 1 0 f \in L^2(\mathbb{R}), f \neq 0 , arises from Gabor analysis. We investigate an analogous problem for locally compact abelian groups G. For a finite subset L \Lambda of G ×[^(G)] G \times \widehat{G} and rG \rho_G the Schrödinger representation of the Heisenberg group associated with G, we give a necessary and in many situations also sufficient condition for the set {rG (x, w, 1)f : (x, w) ? L} \{\rho_G (x, w, 1)f : (x, w) \in \Lambda\} to be linearly independent for all f ? L2(G), f 1 0 f \in L^2(G), f \neq 0 .  相似文献   

14.
Let K be a convex body in \mathbbRn \mathbb{R}^n with volume |K| = 1 |K| = 1 . We choose N 3 n+1 N \geq n+1 points x1,?, xN x_1,\ldots, x_N independently and uniformly from K, and write C(x1,?, xN) C(x_1,\ldots, x_N) for their convex hull. Let f : \mathbbR+ ? \mathbbR+ f : \mathbb{R^+} \rightarrow \mathbb{R^+} be a continuous strictly increasing function and 0 £ in-1 0 \leq i \leq n-1 . Then, the quantity¶¶E (K, N, f °Wi) = òKK f[Wi(C(x1, ?, xN))]dxN ?dx1 E (K, N, f \circ W_{i}) = \int\limits_{K} \ldots \int\limits_{K} f[W_{i}(C(x_1, \ldots, x_N))]dx_{N} \ldots dx_1 ¶¶is minimal if K is a ball (Wi is the i-th quermassintegral of a compact convex set). If f is convex and strictly increasing and 1 £ in-1 1 \leq i \leq n-1 , then the ball is the only extremal body. These two facts generalize a result of H. Groemer on moments of the volume of C(x1,?, xN) C(x_1,\ldots, x_N) .  相似文献   

15.
We study the problem of strong uniqueness in Lp for the Dirichlet operator perturbed by a singular complex-valued potential. First we construct the generator -Hp of a C0-semigroup in Lp, with Hp extending the restriction of the perturbed Dirichlet operator to the set of smooth functions. The corresponding sesquilinear form in L2 is not assumed to be sectorial. Then we reveal sufficient conditions on the logarithmic derivative # of the measure rdx \rho dx and the potential q which ensure that -Hp is the only extension of D+b·?-q \upharpoonrightC0 \Delta +\beta \cdot \nabla -q \upharpoonright_{C_0^{\infty}} which generates a C0-semigroup on Lp. The method of a priori estimates of solutions to corresponding differential equations is employed.  相似文献   

16.
Let M n be a Riemannian n-manifold. Denote by S(p) and [`(Ric)](p)\overline {Ric}(p) the Ricci tensor and the maximum Ricci curvature on M n at a point p ? Mnp\in M^n, respectively. First we show that every isotropic submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies S £ ((n-1)c+ [(n2)/4] H2)gS\leq ((n-1)c+ {n^2 \over 4} H^2)g, where H2 and g are the squared mean curvature function and the metric tensor on M n, respectively. The equality case of the above inequality holds identically if and only if either M n is totally geodesic submanifold or n = 2 and M n is a totally umbilical submanifold. Then we prove that if a Lagrangian submanifold of a complex space form [(M)\tilde]m(4 c)\widetilde M^m(4\,c) satisfies [`(Ric)] = (n-1)c+ [(n2)/4] H2\overline {Ric}= (n-1)c+ {n^2 \over 4} H^2 identically, then it is a minimal submanifold. Finally, we describe the geometry of Lagrangian submanifolds which satisfy the equality under the condition that the dimension of the kernel of second fundamental form is constant.  相似文献   

17.
We will show that the factorization condition for the Fourier integral operators Ir m (X,Y;L )I_\rho ^\mu (X,Y;\it\Lambda ) leads to a parametrized parabolic Monge-Ampère equation. For an analytic operator, the fibration by the kernels of the Hessian of phase function is shown to be analytic in a number of cases, by considering a more general continuation problem for the level sets of a holomorphic mapping. The results are applied to obtain Lp-continuity for translation invariant operators in \Bbb Rn{\Bbb R}^n with n £ 4n\leq 4 and for arbitrary \Bbb Rn{\Bbb R}^n with dpX×Y|Ln+2d\pi _{X\times Y}|_\Lambda \leq n+2.  相似文献   

18.
We establish a close link between the amenability property of a unitary representation p \pi of a group G (in the sense of Bekka) and the concentration property (in the sense of V. Milman) of the corresponding dynamical system (\Bbb Sp, G) ({\Bbb S}_{\pi}, G) , where \Bbb SH {\Bbb S}_{\cal H} is the unit sphere the Hilbert space of representation. We prove that p \pi is amenable if and only if either p \pi contains a finite-dimensional subrepresentation or the maximal uniform compactification of (\Bbb Sp ({\Bbb S}_{\pi} has a G-fixed point. Equivalently, the latter means that the G-space (\Bbb Sp, G) ({\Bbb S}_{\pi}, G) has the concentration property: every finite cover of the sphere \Bbb Sp {\Bbb S}_{\pi} contains a set A such that for every e > 0 \epsilon > 0 the e \epsilon -neighbourhoods of the translations of A by finitely many elements of G always intersect. As a corollary, amenability of p \pi is equivalent to the existence of a G-invariant mean on the uniformly continuous bounded functions on \Bbb Sp {\Bbb S}_{\pi} . As another corollary, a locally compact group G is amenable if and only if for every strongly continuous unitary representation of G in an infinite-dimensional Hilbert space H {\cal H} the system (\Bbb SH, G) ({\Bbb S}_{\cal H}, G) has the property of concentration.  相似文献   

19.
We show that for every n \geqq 4, 0 \leqq k \leqq n - 3, p ? (0, 3] n \geqq 4, 0 \leqq k \leqq n - 3, p \in (0, 3] and every origin-symmetric convex body K in \mathbbRn \mathbb{R}^n , the function ||x ||-k2 ||x ||-n+k+pK \parallel x \parallel^{-k}_{2} \parallel x \parallel^{-n+k+p}_{K} represents a positive definite distribution on \mathbbRn \mathbb{R}^n , where ||·||2 \parallel \cdot \parallel_{2} is the Euclidean norm and ||·||K \parallel \cdot \parallel_{K} is the Minkowski functional of K. We apply this fact to prove a result of Busemann-Petty type that the inequalities for the derivatives of order (n - 4) at zero of X-ray functions of two convex bodies imply the inequalities for the volume of average m-dimensional sections of these bodies for all 3 \leqq m \leqq n 3 \leqq m \leqq n . We also prove a sharp lower estimate for the maximal derivative of X-ray functions of the order (n - 4) at zero.  相似文献   

20.
Abstract. For natural numbers n we inspect all factorizations n = ab of n with aba \le b in \Bbb N\Bbb N and denote by n=an bnn=a_n b_n the most quadratic one, i.e. such that bn - anb_n - a_n is minimal. Then the quotient k(n) : = an/bn\kappa (n) := a_n/b_n is a measure for the quadraticity of n. The best general estimate for k(n)\kappa (n) is of course very poor: 1/n £ k(n) £ 11/n \le \kappa (n)\le 1. But a Theorem of Hall and Tenenbaum [1, p. 29], implies(logn)-d-e £ k(n) £ (logn)-d(\log n)^{-\delta -\varepsilon } \le \kappa (n) \le (\log n)^{-\delta } on average, with d = 1 - (1+log2  2)/log2=0,08607 ?\delta = 1 - (1+\log _2 \,2)/\log 2=0,08607 \ldots and for every e > 0\varepsilon >0. Hence the natural numbers are fairly quadratic.¶k(n)\kappa (n) characterizes a specific optimal factorization of n. A quadraticity measure, which is more global with respect to the prime factorization of n, is k*(n): = ?1 £ ab, ab=n a/b\kappa ^*(n):= \textstyle\sum\limits \limits _{1\le a \le b, ab=n} a/b. We show k*(n) ~ \frac 12\kappa ^*(n) \sim \frac {1}{2} on average, and k*(n)=W(2\frac 12(1-e) log n/log 2n)\kappa ^*(n)=\Omega (2^{\frac {1}{2}(1-\varepsilon ) {\log}\, n/{\log} _2n})for every e > 0\varepsilon>0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号