共查询到20条相似文献,搜索用时 0 毫秒
1.
Generalized Bayes minimax estimators of location vectors for spherically symmetric distributions 总被引:1,自引:0,他引:1
Dominique Fourdrinier 《Journal of multivariate analysis》2008,99(4):735-750
Let X∼f(∥x-θ∥2) and let δπ(X) be the generalized Bayes estimator of θ with respect to a spherically symmetric prior, π(∥θ∥2), for loss ∥δ-θ∥2. We show that if π(t) is superharmonic, non-increasing, and has a non-decreasing Laplacian, then the generalized Bayes estimator is minimax and dominates the usual minimax estimator δ0(X)=X under certain conditions on . The class of priors includes priors of the form for and hence includes the fundamental harmonic prior . The class of sampling distributions includes certain variance mixtures of normals and other functions f(t) of the form e-αtβ and e-αt+βφ(t) which are not mixtures of normals. The proofs do not rely on boundness or monotonicity of the function r(t) in the representation of the Bayes estimator as . 相似文献
2.
Kurt Hoffmann 《Acta Appl Math》1996,43(1):87-95
In the linear regression model with ellipsoidal parameter constraints, the problem of estimating the unknown parameter vector is studied. A well-described subclass of Bayes linear estimators is proposed in the paper. It is shown that for each member of this subclass, a generalized quadratic risk function exists so that the estimator is minimax. Moreover, some of the proposed Bayes linear estimators are admissible with respect to all possible generalized quadratic risks. Also, a necessary and sufficient condition is given to ensure that the considered Bayes linear estimator improves the least squares estimator over the whole ellipsoid whatever generalized risk function is chosen. 相似文献
3.
Bayes minimax estimators of the mean of a scale mixture of multivariate normal distributions 总被引:1,自引:0,他引:1
Bayes estimation of the mean of a variance mixture of multivariate normal distributions is considered under sum of squared errors loss. We find broad class of priors (also in the variance mixture of normal class) which result in proper and generalized Bayes minimax estimators. This paper extends the results of Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264] in a manner similar to that of Maruyama [Admissible minimax estimators of a mean vector of scale mixtures of multivariate normal distribution, J. Multivariate Anal. 21 (2003) 69-78] but somewhat more in the spirit of Fourdrinier et al. [On the construction of bayes minimax estimators, Ann. Statist. 26 (1998) 660-671] for the normal case, in the sense that we construct classes of priors giving rise to minimaxity. A feature of this paper is that in certain cases we are able to construct proper Bayes minimax estimators satisfying the properties and bounds in Strawderman [Minimax estimation of location parameters for certain spherically symmetric distribution, J. Multivariate Anal. 4 (1974) 255-264]. We also give some insight into why Strawderman's results do or do not seem to apply in certain cases. In cases where it does not apply, we give minimax estimators based on Berger's [Minimax estimation of location vectors for a wide class of densities, Ann. Statist. 3 (1975) 1318-1328] results. A main condition for minimaxity is that the mixing distributions of the sampling distribution and the prior distribution satisfy a monotone likelihood ratio property with respect to a scale parameter. 相似文献
4.
This paper treats the problem of estimating positive parameters restricted to a polyhedral convex cone which includes typical order restrictions, such as simple order, tree order and umbrella order restrictions. In this paper, two methods are used to show the improvement of order-preserving estimators over crude non-order-preserving estimators without any assumption on underlying distributions. One is to use Fenchel’s duality theorem, and then the superiority of the isotonic regression estimator is established under the general restriction to polyhedral convex cones. The use of the Abel identity is the other method, and we can derive a class of improved estimators which includes order-statistics-based estimators in the typical order restrictions. When the underlying distributions are scale families, the unbiased estimators and their order-restricted estimators are shown to be minimax. The minimaxity of the restrictedly generalized Bayes estimator against the prior over the restricted space is also demonstrated in the two dimensional case. Finally, some examples and multivariate extensions are given. 相似文献
5.
We construct a broad class of generalized Bayes minimax estimators of the mean of a multivariate normal distribution with covariance equal to σ2Ip, with σ2 unknown, and under the invariant loss δ(X)−θ2/σ2. Examples that illustrate the theory are given. Most notably it is shown that a hierarchical version of the multivariate Student-t prior yields a Bayes minimax estimate. 相似文献
6.
7.
We consider the problem of testing hypotheses on the regression function from n observations on the regular grid on [0,1]. We wish to test the null hypothesis that the regression function belongs to a given functional class (parametric or even nonparametric) against a composite nonparametric alternative. The functions under the alternative are separated in the L2-norm from any function in the null hypothesis. We assume that the regression function belongs to a wide range of Hölder classes but as the smoothness parameter of the regression function is unknown, an adaptive approach is considered. It leads to an optimal and unavoidable loss of order Open image in new window in the minimax rate of testing compared with the non-adaptive setting. We propose a smoothness-free test that achieves the optimal rate, and finally we prove the lower bound showing that no test can be consistent if in the distance between the functions under the null hypothesis and those in the alternative, the loss is of order smaller than the optimal loss. 相似文献
8.
Let Λ=|Se|/|Se+Sh|, where Sh and Se are independently distributed as Wishart distributions Wp(q,Σ) and Wp(n,Σ), respectively. Then Λ has Wilks’ lambda distribution Λp,q,n which appears as the distributions of various multivariate likelihood ratio tests. This paper is concerned with theoretical accuracy for asymptotic expansions of the distribution of T=-nlogΛ. We derive error bounds for the approximations. It is necessary to underline that our error bounds are given in explicit and computable forms. 相似文献
9.
10.
We consider two problems: (1) estimate a normal mean under a general divergence loss introduced in [S. Amari, Differential geometry of curved exponential families — curvatures and information loss, Ann. Statist. 10 (1982) 357-387] and [N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B. 46 (1984) 440-464] and (2) find a predictive density of a new observation drawn independently of observations sampled from a normal distribution with the same mean but possibly with a different variance under the same loss. The general divergence loss includes as special cases both the Kullback-Leibler and Bhattacharyya-Hellinger losses. The sample mean, which is a Bayes estimator of the population mean under this loss and the improper uniform prior, is shown to be minimax in any arbitrary dimension. A counterpart of this result for predictive density is also proved in any arbitrary dimension. The admissibility of these rules holds in one dimension, and we conjecture that the result is true in two dimensions as well. However, the general Baranchick [A.J. Baranchick, a family of minimax estimators of the mean of a multivariate normal distribution, Ann. Math. Statist. 41 (1970) 642-645] class of estimators, which includes the James-Stein estimator and the Strawderman [W.E. Strawderman, Proper Bayes minimax estimators of the multivariate normal mean, Ann. Math. Statist. 42 (1971) 385-388] class of estimators, dominates the sample mean in three or higher dimensions for the estimation problem. An analogous class of predictive densities is defined and any member of this class is shown to dominate the predictive density corresponding to a uniform prior in three or higher dimensions. For the prediction problem, in the special case of Kullback-Leibler loss, our results complement to a certain extent some of the recent important work of Komaki [F. Komaki, A shrinkage predictive distribution for multivariate normal observations, Biometrika 88 (2001) 859-864] and George, Liang and Xu [E.I. George, F. Liang, X. Xu, Improved minimax predictive densities under Kullbak-Leibler loss, Ann. Statist. 34 (2006) 78-92]. While our proposed approach produces a general class of predictive densities (not necessarily Bayes, but not excluding Bayes predictors) dominating the predictive density under a uniform prior. We show also that various modifications of the James-Stein estimator continue to dominate the sample mean, and by the duality of estimation and predictive density results which we will show, similar results continue to hold for the prediction problem as well. 相似文献
11.
Parallel to Cox's [JRSS B34 (1972) 187-230] proportional hazards model, generalized logistic models have been discussed by Anderson [Bull. Int. Statist. Inst. 48 (1979) 35-53] and others. The essential assumption is that the two densities ratio has a known parametric form. A nice property of this model is that it naturally relates to the logistic regression model for categorical data. In astronomic, demographic, epidemiological, and other studies the variable of interest is often truncated by an associated variable. This paper studies generalized logistic models for the two-sample truncated data problem, where the two lifetime densities ratio is assumed to have the form exp{α+φ(x;β)}. Here φ is a known function of x and β, and the baseline density is unspecified. We develop a semiparametric maximum likelihood method for the case where the two samples have a common truncation distribution. It is shown that inferences for β do not depend the nonparametric components. We also derive an iterative algorithm to maximize the semiparametric likelihood for the general case where different truncation distributions are allowed. We further discuss how to check goodness of fit of the generalized logistic model. The developed methods are illustrated and evaluated using both simulated and real data. 相似文献
12.
We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from , a (p+q)-dimensional multivariate normal population with mean and covariance matrix . On the basis of data consisting of n observations on all p+q characteristics and an additional N−n observations on the last q characteristics, where all observations are mutually independent, denote by the maximum likelihood estimator of . We establish criteria which imply that shrinkage estimators of James-Stein type have lower risk than under Euclidean quadratic loss. Further, we show that the corresponding positive-part estimators have lower risk than their unrestricted counterparts, thereby rendering the latter estimators inadmissible. We derive results for the case in which is block-diagonal, the loss function is quadratic and non-spherical, and the shrinkage estimator is constructed by means of a nondecreasing, differentiable function of a quadratic form in . For the problem of shrinking to a vector whose components have a common value constructed from the data, we derive improved shrinkage estimators and again determine conditions under which the positive-part analogs have lower risk than their unrestricted counterparts. 相似文献
13.
We consider asymptotic distributions of maximum deviations of sample covariance matrices, a fundamental problem in high-dimensional inference of covariances. Under mild dependence conditions on the entries of the data matrices, we establish the Gumbel convergence of the maximum deviations. Our result substantially generalizes earlier ones where the entries are assumed to be independent and identically distributed, and it provides a theoretical foundation for high-dimensional simultaneous inference of covariances. 相似文献
14.
Okyoung Na 《Journal of multivariate analysis》2007,98(7):1356-1375
In this paper, we consider the problem of testing for parameter changes in time series models based on a moving estimates (ME) test. It is widely accepted that detecting some changes, for instance, those caused by temporary parameter shifts by the existing cusum test is difficult. A MV test with a fixed bandwidth has been developed to circumvent the defect, but the test still does not perform well under certain conditions. Motivated by this, we propose a MV test with a time varying bandwidth to outperform the original test. In order to illustrate our findings, we have provided simulation results. 相似文献
15.
Carlos A. Coelho 《Journal of multivariate analysis》2004,89(2):191-218
In this paper the concept of near-exact approximation to a distribution is introduced. Based on this concept it is shown how a random variable whose exponential has a Beta distribution may be closely approximated by a sum of independent Gamma random variables, giving rise to the generalized near-integer (GNI) Gamma distribution. A particular near-exact approximation to the distribution of the logarithm of the product of an odd number of independent Beta random variables is shown to be a GNI Gamma distribution. As an application, a near-exact approximation to the distribution of the generalized Wilks Λ statistic is obtained for cases where two or more sets of variables have an odd number of variables. This near-exact approximation gives the exact distribution when there is at most one set with an odd number of variables. In the other cases a near-exact approximation to the distribution of the logarithm of the Wilks Lambda statistic is found to be either a particular generalized integer Gamma distribution or a particular GNI Gamma distribution. 相似文献
16.
We consider Bayesian shrinkage predictions for the Normal regression problem under the frequentist Kullback-Leibler risk function.Firstly, we consider the multivariate Normal model with an unknown mean and a known covariance. While the unknown mean is fixed, the covariance of future samples can be different from that of training samples. We show that the Bayesian predictive distribution based on the uniform prior is dominated by that based on a class of priors if the prior distributions for the covariance and future covariance matrices are rotation invariant.Then, we consider a class of priors for the mean parameters depending on the future covariance matrix. With such a prior, we can construct a Bayesian predictive distribution dominating that based on the uniform prior.Lastly, applying this result to the prediction of response variables in the Normal linear regression model, we show that there exists a Bayesian predictive distribution dominating that based on the uniform prior. Minimaxity of these Bayesian predictions follows from these results. 相似文献
17.
We give a sufficient condition for admissibility of generalized Bayes estimators of the location vector of spherically symmetric distribution under squared error loss. Compared to the known results for the multivariate normal case, our sufficient condition is very tight and is close to being a necessary condition. In particular, we establish the admissibility of generalized Bayes estimators with respect to the harmonic prior and priors with slightly heavier tail than the harmonic prior. We use the theory of regularly varying functions to construct a sequence of smooth proper priors approaching an improper prior fast enough for establishing the admissibility. We also discuss conditions of minimaxity of the generalized Bayes estimator with respect to the harmonic prior. 相似文献
18.
Frauke M. Bleher 《Advances in Mathematics》2010,225(3):1499-71
We determine the universal deformation rings R(G,V) of certain mod 2 representations V of a finite group G which belong to a 2-modular block of G whose defect groups are isomorphic to a generalized quaternion group D. We show that for these V, a question raised by the author and Chinburg concerning the relation of R(G,V) to D has an affirmative answer. We also show that R(G,V) is a complete intersection even though R(G/N,V) need not be for certain normal subgroups N of G which act trivially on V. 相似文献
19.
This paper treats the problem of estimating the restricted means of normal distributions with a known variance, where the means are restricted to a polyhedral convex cone which includes various restrictions such as positive orthant, simple order, tree order and umbrella order restrictions. In the context of the simultaneous estimation of the restricted means, it is of great interest to investigate decision-theoretic properties of the generalized Bayes estimator against the uniform prior distribution over the polyhedral convex cone. In this paper, the generalized Bayes estimator is shown to be minimax. It is also proved that it is admissible in the one- or two-dimensional case, but is improved on by a shrinkage estimator in the three- or more-dimensional case. This means that the so-called Stein phenomenon on the minimax generalized Bayes estimator can be extended to the case where the means are restricted to the polyhedral convex cone. The risk behaviors of the estimators are investigated through Monte Carlo simulation, and it is revealed that the shrinkage estimator has a substantial risk reduction. 相似文献
20.
Hisayuki Tsukuma 《Journal of multivariate analysis》2010,101(6):1483-1492
This paper deals with the problem of estimating the mean matrix in an elliptically contoured distribution with unknown scale matrix. The Laplace and inverse Laplace transforms of the density allow us not only to evaluate the risk function with respect to a quadratic loss but also to simplify expressions of Bayes estimators. Consequently, it is shown that generalized Bayes estimators against shrinkage priors dominate the unbiased estimator. 相似文献