首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An experimental study was conducted to examine the effects of surface roughness and adverse pressure gradient (APG) on the development of a turbulent boundary layer. Hot-wire anemometry measurements were carried out using single and X-wire probes in all regions of a developing APG flow in an open return wind tunnel test section. The same experimental conditions (i.e., T U ref, and C p) were maintained for smooth, k + = 0, and rough, k + = 41–60, surfaces with Reynolds number based on momentum thickness, 3,000 < Re θ < 40,000. The experiment was carefully designed such that the x-dependence in the flow field was known. Despite this fact, only a very small region of the boundary layer showed a balance of the various terms in the integrated boundary layer equation. The skin friction computed from this technique showed up to a 58% increase due to the surface roughness. Various equilibrium parameters were studied and the effect of roughness was investigated. The generated flow was not in equilibrium according to the Clauser (J Aero Sci 21:91–108, 1954) definition due to its developing nature. After a development region, the flow reached the equilibrium condition as defined by Castillo and George (2001), where Λ = const, is the pressure gradient parameter. Moreover, it was found that this equilibrium condition can be used to classify developing APG flows. Furthermore, the Zagarola and Smits (J Fluid Mech 373:33–79, 1998a) scaling of the mean velocity deficit, U δ*/δ, can also be used as a criteria to classify developing APG flows which supports the equilibrium condition of Castillo and George (2001). With this information a ‘full APG region’ was defined.  相似文献   

2.
Particle image velocimetry (PIV) measurements and planar laser induced fluorescence (PLIF) visualizations have been made in a turbulent boundary layer over a rough wall. The wall roughness consisted of square bars placed transversely to the flow at a pitch to height ratio of λ/k = 11 for the PLIF experiments and λ/k = 8 and 16 for the PIV measurements. The ratio between the boundary layer thickness and the roughness height k/δ was about 20 for the PLIF and 38 for the PIV. Both the PLIF and PIV data showed that the near-wall region of the flow was populated by unstable quasi-coherent structures which could be associated to shear layers originating at the trailing edge of the roughness elements. The streamwise mean velocity profile presented a downward shift which varied marginally between the two cases of λ/k, in agreement with previous measurements and DNS results. The data indicated that the Reynolds stresses normalized by the wall units are higher for the case λ/k = 16 than those for λ/k = 8 in the outer region of the flow, suggesting that the roughness density effects could be felt well beyond the near-wall region of the flow. As expected the roughness disturbed dramatically the sublayer which in turn altered the turbulence production mechanism. The turbulence production is maximum at a distance of about 0.5k above the roughness elements. When normalized by the wall units, the turbulence production is found to be smaller than that of a smooth wall. It is argued that the production of turbulence is correlated with the form drag.  相似文献   

3.
Turbulence in rough-wall boundary layers: universality issues   总被引:1,自引:0,他引:1  
Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number (Re θ) range of 1,300–28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 £ h/d £ 0.400.04 \leq h/\delta \leq 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend’s wall similarity hypothesis at low h/δ and also suggest that a single critical roughness height beyond which it fails does not exist. For fully rough flows, the data also confirm that mean flow and turbulence quantities are essentially independent of Re θ; all the Reynolds stresses match those of smooth-wall flows at very high Re θ. Nonetheless, there is a noticeable increase in stress contributions from strong sweep events in the near-wall region, even at quite low h/δ.  相似文献   

4.
Hot-wire and oil-film interferometry measurements are taken for 3D rough wall boundary layers at very high Reynolds numbers (61,000 < Re θ < 120,000) with low blockage ratios, 10 < δ/H < 135, and high roughness, 100 < H + < 4,900. The results cover flows over both rough walls and over obstacles and are compared with and provide extension to recent lower Reynolds number results. The validity of the Townsend ‘wall similarity hypothesis’ in relation to consistently increasing 3D roughness is interrogated. In agreement with recent work, Schultz and Flack (J Fluid Mech 580:381–405, 2007) and Castro (J Fluid Mech 585:469–485, 2007) found that, for relatively low roughness, Townsend’s hypothesis holds for the mean velocity field. With increasing roughness, the equilibrium layer diminishes and gradually vanishes. The viscous component of the wall shear stress decreases, while the turbulent component increases as the roughness effects extend across the boundary layer.  相似文献   

5.
Direct numerical simulations (DNSs) of spatially developing turbulent boundary layers (TBLs) over two-dimensional (2D) rod-roughened walls and three-dimensional (3D) cuboid-roughened walls are conducted to investigate the effects of the roughness height on the flow characteristics in the outer layer. The rod elements are periodically aligned along the downstream direction with a pitch of px/θin = 12, and the cuboid elements are periodically staggered with a pitch of px/θin = 12 and pz/θin = 3, where px and pz are correspondingly the streamwise and spanwise pitches of the roughness and θin is the momentum thickness at the inlet. The first surface roughness is placed 80θin downstream from the inlet, leading to a step change from a smooth to rough surface. The rod and cuboid roughness height (k) is varied in the range of 0.1 ≤ k/θin ≤ 1.8 (13 ≤ δ/k ≤ 285), respectively (δ is the boundary layer thickness), and the Reynolds number based on the momentum thickness (θ) is varied in the range of Reθ = 300 ~ 1400. For each case, the self-preservation form of the velocity-defect and the turbulent Reynolds stresses is achieved along the downstream direction. As the roughness height increases, the roughness function (ΔU+) extracted from the mean velocity profiles increases, although the velocity-defect profiles for the rough-wall cases show good agreement with the profile from the smooth-wall case. The magnitude of the Reynolds stresses in the outer layer increases with an increase of k/δ. The outer layer similarity between the flows over the rough and smooth-walls is found when δ/k ≥ 250 and 100 for the 2D rod and 3D cuboid, respectively. The continuous increase of the Reynolds stresses in the outer layer with an increase of k/δ is explained by a large population of very long structures over the rough-wall flows. Because the characteristic width of the structures increases continuously with an increase of k/δ for the rod and cuboid roughness, a wide width of the structures leads to frequent spanwise merging between adjacent structures. The active spanwise merging events with an increase of k/δ increase the streamwise coherence of the structures with the appearance of significant meandering.  相似文献   

6.
The flow developing downstream of a step change from smooth to rough surface condition is studied in the light of Townsend’s wall similarity hypothesis. Previous studies seem to support the hypothesis for channel and pipe flows, but there are considerable controversies about its application to boundary layers and in particular to surface roughness formed by spanwise bars. It has been suggested that this controversy arises from insufficient separation of scales between the boundary layer thickness and the roughness length scale. An experimental investigation has therefore been undertaken where the flow evolves from a fully developed smooth wall boundary layer at high Reynolds numbers over a step in surface roughness (Re θ = 13,400 at the step). The flow is mapped through the development of the internal layer until the flow is fully developed over the rough wall. The internal layer is found to grow as δ ∼ X 0.73, and after about 15 boundary layer thicknesses at the step, the internal layer has reached the outer edge of the incoming layer. At the last rough wall measurement station, the Reynolds number has grown to Re θ ≈ 32,600 and the ratio of boundary layer to roughness length scales is δ/k ≈ 140. The outer layer differences between the smooth and the rough wall data were found to be sufficiently small to conclude that for this setup the Townsend’s wall similarity hypothesis appears to hold.  相似文献   

7.
Outer layer similarity in fully rough turbulent boundary layers   总被引:1,自引:0,他引:1  
Turbulent boundary layer measurements were made on a flat plate covered with uniform spheres and also on the same surface with the addition of a finer-scale grit roughness. The measurements were carried out in a closed return water tunnel, over a momentum thickness Reynolds number (Re) range of 3,000–15,000, using a two-component, laser Doppler velocimeter (LDV). The results show that the mean profiles for all the surfaces collapse well in velocity defect form. Using the maximum peak to trough height (Rt) as the roughness length scale (k), the roughness functions (U+) for both surfaces collapse, indicating that roughness texture has no effect on U+. The Reynolds stresses for the two rough surfaces also show good agreement throughout the entire boundary layer and collapse with smooth wall results outside of the roughness sublayer. Quadrant analysis and the velocity triple products show changes in the rough wall boundary layers that are confined to y<8ks, where ks is the equivalent sand roughness height. The present results provide support for Townsends wall similarity hypothesis for uniform three-dimensional roughness. However, departures from wall similarity may be observed for rough surfaces where 5ks is large compared to the thickness of the inner layer.  相似文献   

8.
The experimental study of the turbulent boundary layer under external flow conditions similar to those found on the suction side of airfoils in trailing-edge post-stall conditions has been performed. Detailed boundary layer measurements were carried out with a PIV system and a two-sensor wall probe. They cover the region downstream of the suction peak where the boundary layer is subjected to a very strong adverse pressure gradient and has suffered from an abrupt transition from strong favorable to strong adverse pressure gradients. The experiments show that in spite of these severe conditions, the boundary layer is surprisingly able to recover a state of near-equilibrium before separating. In this near-equilibrium zone, the mean velocity defect and all the measured Reynolds stresses are self-similar (in the outer region) with respect to the outer scales δ and U e δ*/δ. The mean momentum balance indicates that for the upper half of the outer region, the advection terms dominate all the stress-gradient terms in the zone prior to separation. A large portion of the outer region has therefore become essentially an inertial flow zone where an approach toward equilibrium is expected.An erratum to this article can be found at  相似文献   

9.
The mean velocity field and skin friction characteristics of a plane turbulent wall jet on a smooth and a fully rough surface were studied using Particle Image Velocimetry. The Reynolds number based on the slot height and the exit velocity of the jet was Re = 13,400 and the nominal size of the roughness was k = 0.44 mm. For this Reynolds number and size of roughness element, the flow was in the fully rough regime. The surface roughness results in a distinct change in the shape of the mean velocity profile when scaled in outer coordinates, i.e. using the maximum velocity and outer half-width as the relevant velocity and length scales, respectively. Using inner coordinates, the mean velocity in the lower region of the inner layer was consistent with a logarithmic profile which characterizes the overlap region of a turbulent boundary layer; for the rough wall case, the velocity profile was shifted downward due to the enhanced wall shear stress. For the fully rough flow, the decay rate of the maximum velocity of the wall jet is increased, and the skin friction coefficient is much larger than for the smooth wall case. The inner layer is also thicker for the rough wall case. The effects of surface roughness were observed to penetrate into the outer layer and slightly enhance the spread rate for the outer half-width, which was not observed in most other studies of transitionally rough wall jet flows.  相似文献   

10.
In this paper, a non-isobaric Marangoni boundary layer flow that can be formed along the interface of immiscible nanofluids in surface driven flows due to an imposed temperature gradient, is considered. The solution is determined using a similarity solution for both the momentum and energy equations and assuming developing boundary layer flow along the interface of the immiscible nanofluids. The resulting system of nonlinear ordinary differential equations is solved numerically using the shooting method along with the Runge-Kutta-Fehlberg method. Numerical results are obtained for the interface velocity, the surface temperature gradient as well as the velocity and temperature profiles for some values of the governing parameters, namely the nanoparticle volume fraction φ (0≤φ≤0.2) and the constant exponent β. Three different types of nanoparticles, namely Cu, Al2O3 and TiO2 are considered by using water-based fluid with Prandtl number Pr =6.2. It was found that nanoparticles with low thermal conductivity, TiO2, have better enhancement on heat transfer compared to Al2O3 and Cu. The results also indicate that dual solutions exist when β<0.5. The paper complements also the work by Golia and Viviani (Meccanica 21:200–204, 1986) concerning the dual solutions in the case of adverse pressure gradient.  相似文献   

11.
Two methods of recovering the entire total shear stress profile from incomplete velocity data in turbulent boundary layers are presented and validated for both DNS simulations and experimental measurements. The first method, an exponential–polynomial curve fit, recovers the whole total shear stress profile using the data from the outer part of the boundary layer (y/δ>0.3). However, while performing well, this curve fit is sensitive to the quality of the data. The second method, a new (1−y/δ) weighted straight line fit, which is very simple and accurate, has been applied to current experiments of drag reduction in zero pressure gradient turbulent boundary layers with and without polymer injection. The total shear stress profile obtained from this fit is used to estimate the contribution of the polymer stress to the total shear stress. It shows that the polymer stress is significant only in the inner part of the boundary layer and the magnitude of the polymer stress is not always proportional to the drag reduction.  相似文献   

12.
A specially constructed hot-wire probe was used to obtain very near-wall velocity measurements in both a fully developed turbulent channel flow and flat plate boundary layer flow. The near-wall hot-wire probe, having been calibrated in a specially constructed laminar flow calibration rig, was used to measure the mean streamwise velocity profile, distributions of streamwise and spanwise intensities of turbulence and turbulence kinetic energy k in the viscous sublayer and beyond; these distributions compare very favorably with available DNS results obtained for channel flow. While low Reynolds number effects were clearly evident for the channel flow, these effects are much less distinct for the boundary layer flow. By assuming the dissipating range of eddy sizes to be statistically isotropic and the validity of Taylor's hypothesis, the dissipation rate ɛ iso in the very near-wall viscous sublayer region and beyond was determined for both the channel and boundary layer flows. It was found that if the convective velocity U c in Taylor's hypothesis was assumed to be equal to the mean velocity  at the point of measurement, the value of (ɛ+ iso)1 thus obtained agrees well with that of (ɛ +)DNS for y + ≥ 80 for channel flow; this suggests the validity of assuming U c= and local isotropy for large values of y +. However, if U c was assumed to be 10.6u τ , the value of (ɛ+ iso)2 thus obtained was found to compare reasonably well with the distribution of (ɛ+ iso)DNS for y +≤ 15. Received: 31 May 1999/Accepted: 20 December 1999  相似文献   

13.
Summary The velocity profiles of a turbulent boundary layer with zero skin friction throughout its region of pressure rise, measured by Stratford in 1959, are analyzed in terms of a law of the wall and a velocity-defect law with a common velocity scale and a logarithmic velocity profile in the region of overlap. The analysis deviates from earlier work by Stratford and Townsend. It is shown that the flow in Stratford's boundary layer, even at the largest value of x 1 at which measurements were taken, is not yet in a state of equilibrium. The velocity scale for turbulent boundary layers with zero skin friction is proportional to the cube root of the pressure gradient.  相似文献   

14.
Direct Numerical Simulations (DNS) of Kolmogorov flows are performed at three different Reynolds numbers Re λ between 110 and 190 by imposing a mean velocity profile in y-direction of the form U(y) = F sin(y) in a periodic box of volume (2π)3. After a few integral times the turbulent flow turns out to be statistically steady. Profiles of mean quantities are then obtained by averaging over planes at constant y. Based on these profiles two different model equations for the mean dissipation ε in the context of two-equation RANS (Reynolds Averaged Navier–Stokes) modelling of turbulence are compared to each other. The high Reynolds number version of the k-ε-model (Jones and Launder, Int J Heat Mass Transfer 15:301–314, 1972), to be called the standard model and a new model by Menter et al. (2006), to be called the Menter–Egorov model, are tested against the DNS results. Both models are solved numerically and it is found that the standard model does not provide a steady solution for the present case, while the Menter–Egorov model does. In addition a fairly good quantitative agreement of the model solution and the DNS data is found for the averaged profiles of the kinetic energy k and the dissipation ε. Furthermore, an analysis based on flow-inherent geometries, called dissipation elements (Wang and Peters, J Fluid Mech 608:113–138, 2008), is used to examine the Menter–Egorov ε model equation. An expression for the evolution of ε is derived by taking appropriate moments of the equation for the evolution of the probability density function (pdf) of the length of dissipation elements. A term-by-term comparison with the model equation allows a prediction of the constants, which with increasing Reynolds number approach the empirical values.  相似文献   

15.
The inner part of a neutral atmospheric boundary layer has been simulated in a wind tunnel, using air injection through the wind tunnel floor to thicken the boundary layer. The flow over both a rural area and an urban area has been simulated by adapting the roughness of the wind tunnel floor. Due to the thickening of the boundary layer the scaling factor of atmospheric boundary layer simulation with air injection is considerably smaller than that without air injection. This reduction of the scaling factor is very important for the simulation of atmospheric dispersion problems in a wind tunnel.The time-mean velocity distribution, turbulence intensity, Reynolds stress and turbulence spectra have been measured in the inner part of the wind tunnel boundary layer. The results are in rather good agreement with atmospheric measurements.Nomenclature d Zero plane displacement, m - h Height of roughness elements, m - k Von Kármán's constant - n Frequency of turbulence velocity component, s–1 - S u(n) Energy spectrum for longitudinal turbulence velocity component, m2 s–1 - S v(n) Energy spectrum for lateral turbulence velocity component, m2 s–1 - S w(n) Energy spectrum for vertical turbulence velocity component, m2 s–1 - U o Free stream velocity outside the boundary layer, m s–1 - Time-mean velocity inside the boundary layer, m s–1 - u* Wall-friction velocity, m s–1 - u Longitudinal turbulence intensity, m s–1 - v Lateral turbulence intensity, m s–1 - w Vertical turbulence intensity, m s–1 - Reynolds stress, m2 s–2 - z Height above earth's surface or wind tunnel floor, m - z o Roughness length, m - Thickness of inner part of boundary layer, m - Thickness of boundary layer, m - Kinematic viscosity, m2 s–1  相似文献   

16.
 Experimental results are reported for the response of an initially turbulent boundary layer (Re θ≈1700) to a favourable pressure gradient with a peak value of K≡(−υ/ρU 3 E ) dp/dx equal to 4.4×10-6. In the near-wall region of the boundary layer (y/δ<0.1) the turbulence intensity u′ scales roughly with the free-stream velocity U E until close to the location where K is a maximum whereas in the outer region u′ remains essentially frozen. Once the pressure gradient is relaxed, the turbulence level increases throughout the boundary layer until K falls to zero when the near wall u′ levels show a significant decrease. The intermittency γ is the clearest indicator of a fundamental change in the turbulence structure: once K exceeds 3×10-6, the value of γ in the immediate vicinity of the wall γ s falls rapidly from unity, reaches zero at the location where K again falls below 3×10-6 and then rises back to unity. Although γ is practically zero throughout the boundary layer in the vicinity of γ s =0, the turbulence level remains high. The explanation for what appears to be a contradiction is that the turbulent frequencies are too low to induce turbulent mixing. The mean velocity profile changes shape abruptly where K exceeds 3×10-6. Values for the skin friction coefficient, based upon hot-film measurements, peak at the same location as K and fall to a minimum close to the location where K drops back to zero. Received: 28 January 1998/Accepted: 8 April 1998  相似文献   

17.
A thre-dimensional direct numerical simulation is combined with a laboratory study to describe the turbulent flow in an enclosed annular rotor-stator cavity characterized by a large aspect ratio G = (b − a)/h = 18.32 and a small radius ratio a/b = 0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate Ω considered is equivalent to the rotational Reynolds number Re = Ωb 2/ν= 9 .5 × 104 (ν the kinematic viscosity of water). This corresponds to a value at which experiment has revealed that the stator boundary layer is turbulent, whereas the rotor boundary layer is still laminar. Comparisons of the computed solution with velocity measurements have given good agreement for the mean and turbulent fields. The results enhance evidence of weak turbulence by comparing the turbulence properties with available data in the literature (Lygren and Andersson, J Fluid Mech 426:297–326, 2001). An approximately self-similar boundary layer behavior is observed along the stator. The wall-normal variations of the structural parameter and of characteristic angles confirm that this boundary layer is three-dimensional. A quadrant analysis (Kang et al., Phys Fluids 10:2315–2322, 1998) of conditionally averaged velocities shows that the asymmetries obtained are dominated by Reynolds stress-producing events in the stator boundary layer. Moreover, Case 1 vortices (with a positive wall induced velocity) are found to be the major source of generation of special strong events, in agreement with the conclusions of Lygren and Andersson (J Fluid Mech 426:297–326, 2001).  相似文献   

18.
Direct Numerical Simulations (DNS) and Large Eddy Simulations (LES) were performed for fully-developed turbulent flow in channels with smooth walls and walls featuring hemispherical roughness elements at shear Reynolds numbers Reτ = 180 and 400, with the goal of studying the effect of these roughness elements on the wall-layer structure and on the friction factor. The LES and DNS approaches were verified first by comparison with existing DNS databases for smooth walls. Then, a parametric study for the hemispherical roughness elements was conducted, including the effects of shear Reynolds number, normalized roughness height (k+ = 10–20) and relative roughness spacing (s+/k+ = 2–6). The sensitivity study also included the effect of distribution pattern (regular square lattice vs. random pattern) of the roughness elements on the walls. The hemispherical roughness elements generate turbulence, thus increasing the friction factor with respect to the smooth-wall case, and causing a downward shift in the mean velocity profiles. The simulations revealed that the friction factor decreases with increasing Reynolds number and roughness spacing, and increases strongly with increasing roughness height. The effect of random element distribution on friction factor and mean velocities is however weak. In all cases, there is a clear cut between the inner layer near the wall, which is affected by the presence of the roughness elements, and the outer layer, which remains relatively unaffected. The study reveals that the presence of roughness elements of this shape promotes locally the instantaneous flow motion in the lateral direction in the wall layer, causing a transfer of energy from the streamwise Reynolds stress to the lateral component. The study indicates also that the coherent structures developing in the wall layer are rather similar to the smooth case but are lifted up by almost a constant wall-unit shift y+ (∼10–15), which, interestingly, corresponds to the relative roughness k+ = 10.  相似文献   

19.
Previous work by the authors (Flack and Schultz, 2010) has identified the root-mean-square roughness height, krms, and the skewness, Sk, of the surface elevation distribution as important parameters in scaling the skin-friction drag on rough surfaces. In this study, three surfaces are tested in turbulent boundary layer flow at a friction Reynolds number, Reτ = 1600–2200. All the surfaces have similar root-mean-square roughness height, while the skewness is varied. Measurements are presented using both two-component LDV and PIV. The results show the anticipated trend of increasing skin-friction drag with increasing skewness. The largest increase in drag occurs going from negative skewness to zero skewness with a more modest increase going from zero to positive skewness. Some differences in the mean velocity and Reynolds stress profiles are observed for the three surfaces. However, these differences are confined to a region close to the rough surface, and the mean velocity and Reynolds stress profiles collapse away from the wall when scaled in outer variables. The turbulence structure as documented through two-point spatial correlations of velocity is also observed to be very similar over the three surfaces. These results support Townsend’s (1976) concept of outer-layer similarity that the wall boundary condition exerts no direct influence on the turbulence structure away from the wall except in setting the velocity and length scales for the outer layer.  相似文献   

20.
Single normal hot-wire measurements of the streamwise component of velocity were taken in fully developed turbulent channel and pipe flows for matched friction Reynolds numbers ranging from 1,000 ≤ Re τ ≤ 3,000. A total of 27 velocity profile measurements were taken with a systematic variation in the inner-scaled hot-wire sensor length l + and the hot-wire length-to-diameter ratio (l/d). It was observed that for constant l + = 22 and l/d >~200l/d \gtrsim 200, the near-wall peak in turbulence intensity rises with Reynolds number in both channels and pipes. This is in contrast to Hultmark et al. in J Fluid Mech 649:103–113, (2010), who report no growth in the near-wall peak turbulence intensity for pipe flow with l + = 20. Further, it was found that channel and pipe flows have very similar streamwise velocity statistics and energy spectra over this range of Reynolds numbers, with the only difference observed in the outer region of the mean velocity profile. Measurements where l + and l/d were systematically varied reveal that l + effects are akin to spatial filtering and that increasing sensor size will lead to attenuation of an increasingly large range of small scales. In contrast, when l/d was insufficient, the measured energy is attenuated over a very broad range of scales. These findings are in agreement with similar studies in boundary layer flows and highlight the need to carefully consider sensor and anemometry parameters when comparing flows across different geometries and when drawing conclusions regarding the Reynolds number dependency of measured turbulence statistics. With an emphasis on accuracy, measurement resolution and wall proximity, these measurements are taken at comparable Reynolds numbers to currently available DNS data sets of turbulent channel/pipe flows and are intended to serve as a database for comparison between physical and numerical experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号