首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Suppose G is a transitive permutation group on a finite set W\mit\Omega of n points and let p be a prime divisor of |G||G|. The smallest number of points moved by a non-identity p-element is called the minimal p-degree of G and is denoted mp (G). ¶ In the article the minimal p-degrees of various 2-transitive permutation groups are calculated. Using the classification of finite 2-transitive permutation groups these results yield the main theorem, that mp(G) 3 [(p-1)/(p+1)] ·|W|m_{p}(G) \geq {{p-1} \over {p+1}} \cdot |\mit\Omega | holds, if Alt(W) \nleqq G {\rm Alt}(\mit\Omega ) \nleqq G .¶Also all groups G (and prime divisors p of |G||G|) for which mp(G) £ [(p-1)/(p)] ·|W|m_{p}(G)\le {{p-1}\over{p}} \cdot |\mit\Omega | are identified.  相似文献   

3.
Let h[-(p)h^-(p) be the relative class number of the p-th cyclotomic field. We show that logh-(p) = [(p+3)/4] logp - [(p)/2] log2p+ log(1-b) + O(log22 p)\log h^-(p) = {{p+3} \over {4}} \log p - {{p} \over {2}} \log 2\pi + \log (1-\beta ) + O(\log _2^2 p), where b\beta denotes a Siegel zero, if such a zero exists and p o -1 mod 4p\equiv -1\pmod {4}. Otherwise this term does not appear.  相似文献   

4.
A generalized Hlawka's inequality says that for any n (\geqq 2) (\geqq 2) complex numbers¶ x1, x2, ..., xn,¶¶ ?i=1n|xi - ?j=1nxj| \leqq ?i=1n|xi| + (n - 2)|?j=1nxj|. \sum_{i=1}^n\Bigg|x_i - \sum_{j=1}^{n}x_j\Bigg| \leqq \sum_{i=1}^{n}|x_i| + (n - 2)\Bigg|\sum_{j=1}^{n}x_j\Bigg|. ¶¶ We generalize this inequality to the trace norm and the trace of an n x n matrix A as¶¶ ||A - Tr A ||1 \leqq ||A||1 + (n - 2)| Tr A|. ||A - {\rm Tr} A ||_1\ \leqq ||A||_1 + (n - 2)| {\rm Tr} A|. ¶¶ We consider also the related inequalities for p-norms (1 \leqq p \leqq ¥) (1 \leqq p \leqq \infty) on matrices.  相似文献   

5.
Simple Explicit Formulas for the Frame-Stewart Numbers   总被引:1,自引:0,他引:1  
Several different approaches to the multi-peg Tower of Hanoi problem are equivalent. One of them is Stewart's recursive formula ¶¶ S (n, p) = min {2S (n1, p) + S (n-n1, p-1) | n1, n-n1 ? \mathbbZ+}. S (n, p) = min \{2S (n_1, p) + S (n-n_1, p-1)\mid n_1, n-n_1 \in \mathbb{Z}^+\}. ¶¶In the present paper we significantly simplify the explicit calculation of the Frame-Stewart's numbers S(n, p) and give a short proof of the domain theorem that describes the set of all pairs (n, n1), such that the above minima are achieved at n1.  相似文献   

6.
We prove that for any $ \varepsilon > 0 $ \varepsilon > 0 there is k (e) k (\varepsilon) such that for any prime p and any integer c there exist k \leqq k(e) k \leqq k(\varepsilon) pairwise distinct integers xi with 1 \leqq xi \leqq pe, i = 1, ?, k 1 \leqq x_{i} \leqq p^{\varepsilon}, i = 1, \ldots, k , and such that¶¶?i=1k [1/(xi)] o c    (mod p). \sum\limits_{i=1}^k {{1}\over{x_i}} \equiv c\quad (\mathrm{mod}\, p). ¶¶ This gives a positive answer to a question of Erdös and Graham.  相似文献   

7.
Suppose that $1 < p < \infty $1 < p < \infty , q=p/(p-1)q=p/(p-1), and for non-negative f ? Lp(-¥ ,¥)f\in L^p(-\infty\! ,\infty ) and any real x we let F(x)-F(0)=ò0xf(tdtF(x)-F(0)=\int _0^xf(t)\ dt; suppose in addition that ò-¥ F(t)exp(-|t|) dt=0\int\limits _{-\infty }^\infty F(t)\exp (-|t|)\ dt=0. Moser's second one-dimensional inequality states that there is a constant CpC_p, such that ò-¥ exp[a |F(x)|q-|x|]  dxCp\int\limits _{-\infty }^\infty \exp [a |F(x)|^q-|x|] \ dx\le C_p for each f with ||f||p £ 1||f||_p\le 1 and every a £ 1a\le 1. Moreover the value a = 1 is sharp. We replace the operation connecting f with F by a more general integral operation; specifically we consider non-negative kernels K(t,x) with the property that xK(t,x) is homogeneous of degree 0 in t, x. We state an analogue of the inequality above for this situation, discuss some applications and consider the sharpness of the constant which replaces a.  相似文献   

8.
Let x1,..., xn be points in the d-dimensional Euclidean space Ed with || xi-xj|| £ 1\| x_{i}-x_{j}\| \le 1 for all 1 \leqq i,j \leqq n1 \leqq i,j \leqq n, where || .||\| .\| denotes the Euclidean norm. We ask for the maximum M(d,n) of \mathop?ij=1n|| xi-xj|| 2\textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| ^{2} (see [4]). This paper deals with the case d = 2. We calculate M(2, n) and show that the value M(2, n) is attained if and only if the points are distributed as evenly as possible among the vertices of a regular triangle of edge-length 1. Moreover we give an upper bound for the value \mathop?ij=1n|| xi-xj|| \textstyle\mathop\sum\limits _{i,\,j=1}^{n}\| x_{i}-x_{j}\| , where the points x1,...,xn are chosen under the same constraints as above.  相似文献   

9.
In this article we determine the irreducible ordinary characters cr \chi_r of a finite group G occurring in a transitive permutation representation (1M )G of a given subgroup M of G, and their multiplicities mr = ((1M)G, cr) 1 0 m_r = ((1_{M})^G, \chi_r) \neq 0 by means of a new explicit formula calculating the coefficients ark of the central idempotents er = ?k=1d ark Dk e_r = \sum\limits_{k=1}^{d} a_{rk} D_k in the intersection algebra B \cal B of (1M )G generated by the intersection matrices Dk corresponding to the double coset decomposition G = èk=1d Mxk M G = \bigcup\limits_{k=1}^{d} Mx_{k} M .¶Furthermore, an explicit formula is given for the calculation of the character values cr(x) \chi_{r}(x) of each element x ? G x \in G . Using this character formula we obtain a new practical algorithm for the calculation of a substantial part of the character table of G.  相似文献   

10.
Let X be a metric measure space with an s-regular measure μ. We prove that if A ì X{A\subset X} is r{\varrho} -porous, then dimp(A) £ s-crs{{\rm {dim}_p}(A)\le s-c\varrho^s} where dimp is the packing dimension and c is a positive constant which depends on s and the structure constants of μ. This is an analogue of a well known asymptotically sharp result in Euclidean spaces. We illustrate by an example that the corresponding result is not valid if μ is a doubling measure. However, in the doubling case we find a fixed N ì X{N\subset X} with μ(N) = 0 such that dimp(A) £ dimp(X)-c(log\tfrac1r)-1rt{{\rm {dim}_p}(A)\le{\rm {dim}_p}(X)-c(\log \tfrac1\varrho)^{-1}\varrho^t} for all r{\varrho} -porous sets A ì X\ N{A \subset X{\setminus} N} . Here c and t are constants which depend on the structure constant of μ. Finally, we characterize uniformly porous sets in complete s-regular metric spaces in terms of regular sets by verifying that A is uniformly porous if and only if there is t < s and a t-regular set F such that A ì F{A\subset F} .  相似文献   

11.
Abstract. We prove the following result: Let X be a compact connected Hausdorff space and f be a continuous function on X x X. There exists some regular Borel probability measure m\mu on X such that the value of¶¶ ò\limit X f(x,y)dm(y)\int\limit _X f(x,y)d\mu (y) is independent of the choice of x in X if and only if the following assertion holds: For each positive integer n and for all (not necessarily distinct) x1,x2,...,xn,y1,y2,...,yn in X, there exists an x in X such that¶¶ ?i=1n f(xi,x)=?i=1n f(yi,x).\sum\limits _{i=1}^n f(x_i,x)=\sum\limits _{i=1}^n f(y_i,x).  相似文献   

12.
We extend a result of ?estakov to compare the complex interpolation method [X 0, X 1]θ with Calderón-Lozanovskii’s construction ${{{{X^{1-\theta}_{0}X^{\theta}_{1}}}}}We extend a result of Šestakov to compare the complex interpolation method [X 0, X 1]θ with Calderón-Lozanovskii’s construction X1-q0Xq1{{{{X^{1-\theta}_{0}X^{\theta}_{1}}}}}, in the context of abstract Banach lattices. This allows us to prove that an operator between Banach lattices T : EF which is p-convex and q-concave, factors, for any q ? (0, 1){{{{\theta \in (0, 1)}}}}, as TT 2 T 1, where T 2 is ( (\fracpq+ (1 - q)p ){{\left({\frac{p}{{\theta + (1 - \theta)p}}} \right)}}-convex and T 1 is (\fracq1 - q ){{\left({\frac{q}{{1 - \theta }}} \right)}}-concave.  相似文献   

13.
Let X be a smooth algebraic surface, L ? Pic(X) L \in \textrm{Pic}(X) and H an ample divisor on X. Set MX,H(2; L, c2) the moduli space of rank 2, H-stable vector bundles F on X with det(F) = L and c2(F) = c2. In this paper, we show that the geometry of X and of MX,H(2; L, c2) are closely related. More precisely, we prove that for any ample divisor H on X and any L ? Pic(X) L \in \textrm{Pic}(X) , there exists n0 ? \mathbbZ n_0 \in \mathbb{Z} such that for all n0 \leqq c2 ? \mathbbZ n_0 \leqq c_2 \in \mathbb{Z} , MX,H(2; L, c2) is rational if and only if X is rational.  相似文献   

14.
We determine the best possible real constants a\alpha and b\beta such that the inequalities [(2(2n)!)/((2p)2n)] [1/(1-2a-2n)] \leqq |B2n| \leqq [(2(2n)!)/((2p)2n)] [1/(1-2b-2n)]{2(2n)! \over(2\pi)^{2n}} {1 \over 1-2^{\alpha -2n}} \leqq |B_{2n}| \leqq {2(2n)! \over (2\pi )^{2n}}\, {1 \over 1-2^{\beta -2n}}hold for all integers n\geqq 1n\geqq 1. Here, B2, B4, B6,... are Bernoulli numbers.  相似文献   

15.
Summary. Let F, Y \Phi, \Psi be strictly monotonic continuous functions, F,G be positive functions on an interval I and let n ? \Bbb N \{1} n \in {\Bbb N} \setminus \{1\} . The functional equation¶¶F-1 ([(?i=1nF(xi)F(xi))/(?i=1n F(xi)]) Y-1 ([(?i=1nY(xi)G(xi))/(?i=1n G(xi))])  (x1,?,xn ? I) \Phi^{-1}\,\left({\sum\limits_{i=1}^{n}\Phi(x_{i})F(x_{i})\over\sum\limits_{i=1}^{n} F(x_{i}}\right) \Psi^{-1}\,\left({\sum\limits_{i=1}^{n}\Psi(x_{i})G(x_{i})\over\sum\limits_{i=1}^{n} G(x_{i})}\right)\,\,(x_{1},\ldots,x_{n} \in I) ¶was solved by Bajraktarevi' [3] for a fixed n 3 3 n\ge 3 . Assuming that the functions involved are twice differentiable he proved that the above functional equation holds if and only if¶¶Y(x) = [(aF(x) + b)/(cF(x) + d)],       G(x) = kF(x)(cF(x) + d) \Psi(x) = {a\Phi(x)\,+\,b\over c\Phi(x)\,+\,d},\qquad G(x) = kF(x)(c\Phi(x) + d) ¶where a,b,c,d,k are arbitrary constants with k(c2+d2)(ad-bc) 1 0 k(c^2+d^2)(ad-bc)\ne 0 . Supposing the functional equation for all n = 2,3,... n = 2,3,\dots Aczél and Daróczy [2] obtained the same result without differentiability conditions.¶The case of fixed n = 2 is, as in many similar problems, much more difficult and allows considerably more solutions. Here we assume only that the same functional equation is satisfied for n = 2 and solve it under the supposition that the functions involved are six times differentiable. Our main tool is the deduction of a sixth order differential equation for the function j = F°Y-1 \varphi = \Phi\circ\Psi^{-1} . We get 32 new families of solutions.  相似文献   

16.
Let Hk\mathcal{H}_{k} denote the set {n∣2|n, n\not o 1 (mod p)n\not\equiv 1\ (\mathrm{mod}\ p) ∀ p>2 with p−1|k}. We prove that when X\frac1120(1-\frac12k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{2k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n ? \allowbreak Hk ?(X, X+H]n\in\allowbreak {\mathcal{H}_{k} \cap (X, X+H]} can be represented as the sum of a prime and a k-th power of prime for k≧3. Moreover, when X\frac1120(1-\frac1k) +e\leqq H\leqq XX^{\frac{11}{20}\left(1-\frac{1}{k}\right) +\varepsilon}\leqq H\leqq X, almost all integers n∈(X,X+H] can be represented as the sum of a prime and a k-th power of integer for k≧3.  相似文献   

17.
Summary. We investigate the bounded solutions j:[0,1]? X \varphi:[0,1]\to X of the system of functional equations¶¶j(fk(x))=Fk(j(x)),    k=0,?,n-1,x ? [0,1] \varphi(f_k(x))=F_k(\varphi(x)),\;\;k=0,\ldots,n-1,x\in[0,1] ,(*)¶where X is a complete metric space, f0,?,fn-1:[0,1]?[0,1] f_0,\ldots,f_{n-1}:[0,1]\to[0,1] and F0,...,Fn-1:X? X F_0,...,F_{n-1}:X\to X are continuous functions fulfilling the boundary conditions f0(0) = 0, fn-1(1) = 1, fk+1(0) = fk(1), F0(a) = a,Fn-1(b) = b,Fk+1(a) = Fk(b), k = 0,?,n-2 f_{0}(0) = 0, f_{n-1}(1) = 1, f_{k+1}(0) = f_{k}(1), F_{0}(a) = a,F_{n-1}(b) = b,F_{k+1}(a) = F_{k}(b),\,k = 0,\ldots,n-2 , for some a,b ? X a,b\in X . We give assumptions on the functions fk and Fk which imply the existence, uniqueness and continuity of bounded solutions of the system (*). In the case X = \Bbb C X= \Bbb C we consider some particular systems (*) of which the solutions determine some peculiar curves generating some fractals. If X is a closed interval we give a collection of conditions which imply respectively the existence of homeomorphic solutions, singular solutions and a.e. nondifferentiable solutions of (*).  相似文献   

18.
We will say that a subgroup X of G satisfies property C in G if CG(X?Xg)\leqq X?Xg{\rm C}_{G}(X\cap X^{{g}})\leqq X\cap X^{{g}} for all g ? G{g}\in G. We obtain that if X is a nilpotent subgroup satisfying property C in G, then XF(G) is nilpotent. As consequence it follows that if N\triangleleft GN\triangleleft G is nilpotent and X is a nilpotent subgroup of G then CG(N?X)\leqq XC_G(N\cap X)\leqq X implies that NX is nilpotent.¶We investigate the relationship between the maximal nilpotent subgroups satisfying property C and the nilpotent injectors in a finite group.  相似文献   

19.
Let n be an integer greater than 1, and let G be a group. A subset {x1, x2, ..., xn} of n elements of G is said to be rewritable if there are distinct permutations p \pi and s \sigma of {1, 2, ..., n} such that¶¶xp(1)xp(2) ?xp(n) = xs(1)xs(2) ?xs(n). x_{\pi(1)}x_{\pi(2)} \ldots x_{\pi(n)} = x_{\sigma(1)}x_{\sigma(2)} \ldots x_{\sigma(n)}. ¶¶A group is said to have the rewriting property Qn if every subset of n elements of the group is rewritable. In this paper we prove that a finite group of odd order has the property Q3 if and only if its derived subgroup has order not exceeding 5.  相似文献   

20.
The perturbation classes problem for semi-Fredholm operators asks when the equalities SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)} and SC(X,Y)=PF-(X,Y){\mathcal{SC}(X,Y)=P\Phi_-(X,Y)} are satisfied, where SS{\mathcal{SS}} and SC{\mathcal{SC}} denote the strictly singular and the strictly cosingular operators, and PΦ+ and PΦ denote the perturbation classes for upper semi-Fredholm and lower semi-Fredholm operators. We show that, when Y is a reflexive Banach space, SS(Y*,X*)=PF+(Y*,X*){\mathcal{SS}(Y^*,X^*)=P\Phi_+(Y^*,X^*)} if and only if SC(X,Y)=PF-(X,Y),{\mathcal{SC}(X,Y)=P\Phi_-(X,Y),} and SC(Y*,X*)=PF-(Y*,X*){\mathcal{SC}(Y^*,X^*)=P\Phi_-(Y^*,X^*)} if and only if SS(X,Y)=PF+(X,Y){\mathcal{SS}(X,Y)=P\Phi_+(X,Y)}. Moreover we give examples showing that both direct implications fail in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号