首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The long-range triangle-well fluid has been studied using three different approaches: firstly, by an analytical equation of state obtained by a perturbation theory, secondly via a self-consistent integral equation theory, the so-called self-consistent Ornstein–Zernike approach (SCOZA) which is presently one of the most accurate liquid-state theories, and finally by Monte Carlo simulations. We present vapour–liquid phase diagrams and thermodynamic properties such as the internal energy and the pressure as a function of the density at different temperatures and for several values of the potential range. We assess the accuracy of the theoretical approaches by comparison with Monte Carlo simulations: the SCOZA method accurately predicts the thermodynamics of these systems and the first-order perturbation theory reproduces the overall thermodynamic behaviour for ranges greater than two molecular diameters except that it overestimates the critical point. The simplicity of the equation of state and the fact that it is analytical in the potential range makes it a good candidate to be used for calculating other thermodynamic properties and as an ingredient in more complex theoretical approaches.  相似文献   

2.
It is shown that the theory of self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon constant and are less ultraviolet divergent than the conventional perturbation expansion.  相似文献   

3.
We have obtained by Monte Carlo NVT simulations the constant-volume excess heat capacity of square-well fluids for several temperatures, densities and potential widths. Heat capacity is a thermodynamic property much more sensitive to the accuracy of a theory than other thermodynamic quantities, such as the compressibility factor. This is illustrated by comparing the reported simulation data for the heat capacity with the theoretical predictions given by the Barker-Henderson perturbation theory as well as with those given by a non-perturbative theoretical model based on Baxter's solution of the Percus-Yevick integral equation for sticky hard spheres. Both theories give accurate predictions for the equation of state. By contrast, it is found that the Barker-Henderson theory strongly underestimates the excess heat capacity for low to moderate temperatures, whereas a much better agreement between theory and simulation is achieved with the non-perturbative theoretical model, particularly for small well widths, although the accuracy of the latter worsens for high densities and low temperatures, as the well width increases.  相似文献   

4.
吴淑贞  程荣军  葛红霞 《中国物理 B》2011,20(8):80509-080509
A thermodynamic theory is formulated to describe the phase transition and critical phenomenon in traffic flow.Based on the two-velocity difference model,the time-dependent Ginzburg-Landau (TDGL) equation under certain condition is derived to describe the traffic flow near the critical point through the nonlinear analytical method.The corresponding two solutions,the uniform and the kink solutions,are given.The coexisting curve,spinodal line and critical point are obtained by the first and second derivatives of the thermodynamic potential.The modified Korteweg de Vries (mKdV) equation around the critical point is derived by using the reductive perturbation method and its kink-antikink solution is also obtained.The relation between the TDGL equation and the mKdV equation is shown.The simulation result is consistent with the nonlinear analytical result.  相似文献   

5.
发散光束小尺度自聚焦特性的研究   总被引:5,自引:3,他引:2  
顾亚龙  朱健强 《光学学报》2006,26(11):734-1738
研究了发散光束的小尺度自聚焦效应。从非线性傍轴波动方程出发,利用坐标变换,推导出发散光束小尺度扰动的传输方程,进而得到小尺度扰动增长的临界频率、最大增长频率和相应B积分值的变化规律。研究了发散光束初始曲率半径对小尺度自聚焦效应的影响。结果表明,对于一定的传输距离,随着发散光束初始曲率半径的减小,小尺度扰动的最大增长频率减小,相应的最大增益减小,即B积分值也减小。对于一定的初始曲率半径,随着传输距离的增大,B积分值增长变缓,并最终停止。利用局部能量守恒定律研究了发散光束的成丝距离,发现小的初始曲率半径可以延长成丝距离。  相似文献   

6.
The theory of turbulence in an incompressible fluid is formulated using methods similar to those of quantum field theory. A systematic perturbation theory is set up, and the terms in the perturbation series are shown to be in one to one correspondence with certain diagrams analogous to Feynman diagrams. From a study of the diagrams it is shown that the perturbation series can be rearranged and partially summed in such a way as to reduce the problem to the solution of three simultaneous integral equations for three functions, one of which is the second order velocity correlation function. The equations have the form of infinite power series integral equations, and the first few terms in the power series are derived from an analysis of the diagrams to sixth order. Truncation of the integral equations at the lowest nontrivial order yields Chandrasekhar's equation, and truncation at a higher order yields the equations discussed by Kraichnan.  相似文献   

7.
We present a definition for tomographic Feynman path integral as representation for quantum tomograms via Feynman path integral in the phase space. The proposed representation is the potential basis for investigation of Path Integral Monte Carlo numerical methods with quantum tomograms. Tomographic Feynman path integral is a representation of solution of initial problem for evolution equation for tomograms. The perturbation theory for quantum tomograms is constructed.  相似文献   

8.
《Molecular physics》2012,110(11-12):1317-1323
The second-order thermodynamic perturbation theory formulation of Barker and Henderson is used to derive the equation of state of the triangle-well fluid. This is combined with the rational function approximation to the radial distribution function of the hard-sphere fluid. Results are obtained for the critical parameters and the liquid–vapour coexistence curve for various values of the range of the potential. A comparison with available simulation data is presented.  相似文献   

9.
We discuss the Euclidean noncommutative f44{\phi^4_4}-quantum field theory as an example of a renormalizable field theory. Using a Ward identity, Disertori, Gurau, Magnen and Rivasseau were able to prove the vanishing of the beta function for the coupling constant to all orders in perturbation theory. We extend this work and obtain from the Schwinger–Dyson equation a non-linear integral equation for the renormalised two-point function alone. The non-trivial renormalised four-point function fulfils a linear integral equation with the inhomogeneity determined by the two-point function. These integral equations might be the starting point of a nonperturbative construction of a Euclidean quantum field theory on a noncommutative space. We expect to learn about renormalisation from this almost solvable model.  相似文献   

10.
Based on a proposal by Shinomoto, a new integral equation is derived for the radial distribution function of a hard-sphere fluid using mainly geometric arguments. This integral equation is solved by a perturbation expansion in the density of the fluid, and the results obtained are compared with those from molecular dynamics simulations and from the Born-Green-Yvon (BGY) and Percus-Yevick (PY) theories. The present theory provides results for the radial distribution function which are intermediate in accuracy between those obtained from the BGY and from the PY theories.  相似文献   

11.
王涛  高自友  赵小梅 《中国物理 B》2012,21(2):20512-020512
Considering the effect of multiple flux difference, an extended lattice model is proposed to improve the stability of traffic flow. The stability condition of the new model is obtained by using linear stability theory. The theoretical analysis result shows that considering the flux difference effect ahead can stabilize traffic flow. The nonlinear analysis is also conducted by using a reductive perturbation method. The modified KdV (mKdV) equation near the critical point is derived and the kink-antikink solution is obtained from the mKdV equation. Numerical simulation results show that the multiple flux difference effect can suppress the traffic jam considerably, which is in line with the analytical result.  相似文献   

12.
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.  相似文献   

13.
An analytical equation of state is presented for the square-well dimer fluid of variable well width (1 ≤ λ ≥ 2) based on Barker-Henderson perturbation theory using the recently developed analytical expression for radial distribution function of hard dimers. The integral in the first- and the second-order perturbation terms utilizes the Tang, Y and Lu, B. C.-Y., 1994, J. chem. Phys., 100, 6665 formula for the Hilbert transform. To test the equation of state, NVT and Gibbs ensemble Monte Carlo simulations for square-well dimer fluids are performed for three different well widths (λ = 1.3, 1.5 and 1.8). The prediction of the perturbation theory is also compared with that of thermodynamic perturbation theory in which the equation of state for the square-well dimer is written in terms of that of square-well monomers and the contact value of the radial distribution function.  相似文献   

14.
赵云辉  赵乘麟 《中国物理 B》2008,17(8):2783-2789
The performance of the so-called superconvergent quantum perturbation theory (Wenhua Hal et al2000 Phys. Rev. A 61 052105) is investigated for the case of the ground-state energy of the helium-like ions. The scaling transformation τ → τ/Z applied to the Hamiltonian of a two-electron atomic ion with a nuclear charge Z (in atomic units). Using the improved Rayleigh-SchrSdinger perturbation theory based on the integral equation to helium-like ions in the ground states and treating the electron correlations as perturbations, we have performed a third-order perturbation calculation and obtained the second-order corrected wavefunctions consisting of a few terms and third-order energy corrections. We find that third-order and higher-order energy corrections are improved with decreasing nuclear charge. This result means that the former is quadratically integrable and the latter is physically meaningful. The improved quantum perturbation theory fits the higher-order perturbation case. This work shows that it is a development on the quantum perturbation problem of helium-like systems.  相似文献   

15.
向远涛  Andrej Jamnik  杨开巍 《中国物理 B》2010,19(11):110508-110508
This paper investigates the structural properties of a model fluid dictated by an effective inter-particle oscillatory potential by grand canonical ensemble Monte Carlo (GCEMC) simulation and classical liquid state theories.The chosen oscillatory potential incorporates basic interaction terms used in modeling of various complex fluids which is composed of mesoscopic particles dispersed in a solvent bath,the studied structural properties include radial distribution function in bulk and inhomogeneous density distribution profile due to influence of several external fields.The GCEMC results are employed to test the validity of two recently proposed theoretical approaches in the field of atomic fluids.One is an Ornstein-Zernike integral equation theory approach;the other is a third order + second order perturbation density functional theory.Satisfactory agreement between the GCEMC simulation and the pure theories fully indicates the ready adaptability of the atomic fluid theories to effective model potentials in complex fluids,and classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids under the single component macro-fluid approximation.  相似文献   

16.
A perturbation theory for square-well chain fluids is developed within the scheme of the (generalised) Wertheim thermodynamic perturbation theory. The theory is based on the Pavlyukhin parametrisations [Y. T. Pavlyukhin, J. Struct. Chem. 53, 476 (2012)] of their simulation data for the first four perturbation terms in the high temperature expansion of the Helmholtz free energy of square-well monomer fluids combined with a second-order perturbation theory for the contact value of the radial distribution function of the square-well monomer fluid that enters into bonding contribution. To obtain the latter perturbation terms, we have performed computer simulations in the hard-sphere reference system. The importance of the perturbation terms beyond the second-order one for the monomer fluid and of the approximations of different orders in the bonding contribution for the chain fluids in the predicted equation of state, excess energy and liquid–vapour coexistence densities is analysed.  相似文献   

17.
Pseudo-hard body fluids resulting from extended primitive models of water, methanol, and ammonia have been investigated both by computer simulations and theory for a number of geometrical parameters. It is shown that none of the existing equations of state and integral equations for the site-site correlation functions is able to describe the properties of the pseudohard body fluids reasonably accurately. For the equation of state an accurate semi-empirical method is proposed and for the site-site correlation functions the reference average Mayer function perturbation theory has been found to perform at least qualitatively correctly, which is not the case with Ornstein-Zernike equation based theories.  相似文献   

18.
The problem of calculating photo and electro-reflectance spectra from weakly inhomogeneous layers of semiconductor heterostructures is solved by combining two former approaches; the transfer matrix method and the perturbation theoretical treatment of the weak inhomogeneity. The electric field profile and its perturbation by pump light is calculated from an integral equation. The method is applied to several heterostructures based on (Ga,Al)As. Due to its speed and accuracy the method is capable of online simulation of PR and ER spectra.  相似文献   

19.
Abstract

One of the main problems in the statistical physics of condensed systems is the problem of the adequate equation of state to describe the thermodynamical properties of the substance in the wide range of pressure values. Here it is being solved by means of thermodynamic perturbation theory and the integral equations of the statistical theory of dense gases and liquids.  相似文献   

20.
Integral equation theories and Monte–Carlo simulations were used to determine the thermodynamic and structural properties of a two-dimensional asymmetric Coulomb system. We check correctness of different closures in integral equations and their ability to reproduce Kosterlitz–Thouless and vapour–liquid phase transitions of the electrolyte and critical points. Integral equation theory results were compared with Monte–Carlo data. Among selected closures, hypernetted-chain approximation results matched computer simulation data best, but these equations unfortunately break down at temperatures well above the Kosterlitz–Thouless transition. The Kovalenko-Hirata closure produces results even at very low temperatures and densities, but no sign of phase transition was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号