首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The focus of this work is to develop a technique to obtain numerical solution over a long range of time for non-linear multi-body dynamic systems undergoing large amplitude motion. The system considered is an idealization of an important class of problems characterized by non-linear interaction between continuously distributed mass and stiffness and lumped mass and stiffness. This characteristic results in some distinctive features in the system response and also poses significant challenges in obtaining a solution.

In this paper, equations of motion are developed for large amplitude motion of a beam carrying a moving spring–mass. The equations of motion are solved using a new approach that uses average acceleration method to reduce non-linear ordinary differential equations to non-linear algebraic equations. The resulting non-linear algebraic equations are solved using an iterative method developed in this paper. Dynamics of the system is investigated using a time-frequency analysis technique.  相似文献   


2.
The Mehler–Fock transformation method is used to study the rolling of a rigid cylinder over a half-plane with initial stresses. The problem is reduced to a system of two dual integral equations, which are then reduced to a system of two integral Fredholm equations of the second kind. The system of integral equations is solved by the method of degenerate kernels. The dependences of the normal and tangential stresses on the elongation are plotted.  相似文献   

3.
A complete system of equations determining a viscous laminar, strongly overexpanded jet is obtained; the system is formed by shortened Navier—Stokes equations, equations for the metric of a coordinate system related with the form of the jet, and equations of transition from curvilinear coordinates to Cartesian. The problem of calculating the jet is formulated as a Cauchy problem for this system. Two- and three-dimensional flows are examined. Possible swirling of the jet is taken into account.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 137–147, March–April, 1977.  相似文献   

4.
The weakly nonholonomic system is a nonholonomic system whose constraint equations contain a small parameter. The special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system are studied. Appell equations for a weakly nonholonomic system are established and the definition and the criterion of the special Mei symmetry of the system are given. The structure equation of the special Mei symmetry for a weakly nonholonomic system and approximate conserved quantity deduced from the special Mei symmetry of the system are obtained. Finally, special approximate conserved quantity issues of Appell equations for a two freedom degrees weakly nonholonomic system are investigated using the results of this paper.  相似文献   

5.
Using a transformation matrix, we reduce a system of differential equations with a small parameter in the coefficients of some derivatives and a turning point to an integrable system of equations. We also study properties of the transformation matrix.  相似文献   

6.
In the article a numerical solution of the connected system of the equations of turbulent transfer for the fields of the velocity and concentration of a chemically active additive is used to calculate a number of the second moments of the concentration field in a flat mixing zone. The system of transfer equations is derived from the equations for a common function of the distribution of the fields of the pulsations of the velocity and the concentration [1] and is simplified in the approximation of the boundary layer. A closed form of the transfer equations is obtained on the level of three moments, using the hypothesis of four moments [2] and its generalized form for mixed moments of the field of the velocity and the field of a passive scalar. The differential operator of the closed system of the equations of turbulent transfer for the fields of the velocity and the concentration is found by a method of closure not of the parabolic type but of a weakly hyperbolic type [3]. An implicit difference scheme proposed in [4] is used for the numerical solution. The results of the numerical solution are compared with the experimental data of [5].  相似文献   

7.
A closed system of differential equations for stresses and boundary and integral equilibrium and compatibility conditions for the components of the stress tensor are derived in solving a three-dimensional elastic problem for an unbounded layer. These equations are proposed to integrate directly.  相似文献   

8.
The flow of a nonlinearly viscous (power-law) fluid over the surface of a rotating flat disk is investigated. A solution form which makes it possible to reduce the complete system of partial differential equations to a system of ordinary differential equations is found. This system is integrated using the Runge-Kutta method and reduction to a Cauchy problem on the basis of Newton's method. The velocity and pressure fields in a power-law fluid film flowing over the surface of a rotating flat disk are found numerically.  相似文献   

9.
Collective behavior of compressible gas bubbles moving in an inviscid incompressible fluid is studied. A kinetic approach is employed, based on an approximate calculation of the fluid flow potential and formulation of Hamilton's equations for generalized coordinates and momenta of bubbles. Kinetic equations governing the evolution of a distribution function of bubbles are derived. These equations are similar to Vlasov's equations. Conservation laws which are direct consequences of the kinetic system are found. It is shown that for a narrowly peaked distribution function they form a closed system of hydrodynamical equations for the mean flow parameters. The system yields the analogue of Rayleigh–Lamb's equation governing oscillations of bubbles. A variational principle for the hydrodynamical system is established and the linear stability analysis is performed.  相似文献   

10.
Quasi-linear integrodifferential equations that describe vortex flows of an ideal incomparessible liquid in a narrow curved channel in the Eulerian-Lagrangian coordinate system are considered. The necessary and sufficient conditions for hyperbolicity of the system of equations of motion are obtained for flows with a monotonic velocity depth profile. The propagation velocities of the characteristics and the characteristic form of the system are calculated. A particular solution is given in which the system of integrodifferential equations changes type with time. The solution of the Cauchy problem is given for linearized equations. An example of initial data for which the Cauchy problem is ill-posed is constructed. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 38–49, July–August, 1998.  相似文献   

11.
A closed-form system of dynamic equations describing the free motion of a material system with variable mass–inertia characteristics is derived. The system consists of a carrying body and carried bodies (freight) and undergoes translational–rotational motion in space. The differential equations of motion derived include time-dependent parameters and allow for the inertia and varying mass of the system, etc. It is pointed out that special cases can be derived from the general equations to study various modes of motion and stability phenomena  相似文献   

12.
Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phicoordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By ~sing Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.  相似文献   

13.
A system of equations describing the one-dimensional time-dependent polytropic motion of a gas is considered. In special cases the general solutions of this system of equations are obtained and exact solutions with the initial conditions which are periodic with respect to the spatial variable are found. For an arbitrary polytropic exponent an asymptotic solution, which is uniformly suitable till the onset of the gradient catastrophe, is constructed in the form of expansions in series in a small parameter, namely, the initial wave amplitude. Asymptotic dependences of the time of onset and the location of the gradient catastrophe are obtained. The complex correspondence between the initial system of equations and the system of equations describing the motion of quasi-gas media is given. An example of using this correspondence is considered.  相似文献   

14.
A special Lie symmetry and Hojman conserved quantity of the Appell equations for a Chetaev nonholonomic system are studied. The differential equations of motion and Appell equations of the Chetaev nonholonomic system are established. Under the special Lie symmetry group transformations in which the time is invariable, the determining equation of the special Lie symmetry of the Appell equations for a Chetaev nonholonomic system is given, and the expression of the Hojman conserved quantity is deduced directly from the Lie symmetry. Finally, an example is given to illustrate the application of the results.  相似文献   

15.
The paper studies the interaction of a rigid spherical body and a cylindrical cavity filled with an ideal compressible fluid in which a plane acoustic wave of unit amplitude propagates. The solution is based on the possibility of transforming partial solutions of the Helmholtz equation between cylindrical and spherical coordinates. Satisfying the interface conditions between the cavity and the acoustic medium and the boundary conditions on the spherical surface yields an infinite system of algebraic equations with indefinite integrals of cylindrical functions as coefficients. This system of equations is solved by reduction. The behavior of the system is studied depending on the frequency of the plane wave  相似文献   

16.
The machinery of Lie theory (groups and algebras) is applied to the system of equations governing the unsteady flow of a polytropic gas. The action on solutions of transformation groups which leave the equations invariant is considered. Using the invariants of the transformation groups, various symmetry reductions are achieved in both the steady state and the unsteady cases. These reduce the system of partial differential equations to systems of ordinary differential equations for which some closed-form solutions are obtained. It is then illustrated how each solution in the steady case gives rise to time-dependent solutions.  相似文献   

17.
A new HB (Harmonic Balance)/AFT (Alternating Frequency Time) method is further developed to obtain synchronous and subsynchronous whirling response of nonlinear MDOF rotor systems. Using the HBM, the nonlinear differential equations of a rotor system can be transformed to algebraic equations with unknown harmonic coefficients. A technique is applied to reduce the algebraic equations to only those of the nonlinear coordinates. Stability analysis of the periodic solutions is performed via perturbation of the solutions. To further reduce the computational time for the stability analysis, the reduced system parameters (mass, damping, and stiffness) are calculated in terms of the already known harmonic coefficients. For illustration, a simple MDOF rotor system with a piecewise-linear bearing clearance is used to demonstrate the accuracy of the calculated steady-state solutions and their bifurcation boundaries. Employing ideas from modern dynamics theory, the example MDOF nonlinear rotor system is shown to exhibit subsynchronous, quasi-periodic and chaotic whirling motions.  相似文献   

18.
This paper presents the equations of motion of an air saturated rectangular porous plate. The model is based on a mixed displacement–pressure formulation of the Biot–Allard theory [1]. We obtain a system of equations which describe the coupling beetween the solid and fluid phases of the plate. This system is solved by applying the Galerkin method.  相似文献   

19.
In order to solve the problem of motion for the system with n degrees of freedom under the action of p impulsive constraints, we must solve the simultaneous equations consisting of n+p equations. In this paper, it has been shown that the undetermined multipliers in the equations of impact can be cancelled for the cases of both the generalized coordinates and the quasi-coordinates. Thus there are only n-p equations of impact. Combining these equations with p impulsive constraint equations, we have simultaneous equations consisting of n equations. Therefore, only n equations are necessary to solve the problem of impact for the system subjected to impulsive constraints. The method proposed in this paper is simpler than ordinary methods.  相似文献   

20.
We study motions near a Hopf bifurcation of a representative nonconservative four-dimensional autonomous system with quadratic nonlinearities. Special cases of the four-dimensional system represent the envelope equations that govern the amplitudes and phases of the modes of an internally resonant structure subjected to resonant excitations. Using the method of multiple scales, we reduce the Hopf bifurcation problem to two differential equations for the amplitude and phase of the bifurcating cyclic solutions. Constant solutions of these equations provide asymptotic expansions for the frequency and amplitude of the bifurcating limit cycle. The stability of the constant solutions determines the nature of the bifurcation (i.e., subcritical or supercritical). For different choices of the control parameter, the range of validity of the analytical approximation is ascertained using numerical simulations. The perturbation analysis and discussions are also pertinent to other autonomous systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号