首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Design for structural integrity requires an appreciation of where stress singularities can occur in structural configurations. While there is a rich literature devoted to the identification of such singular behavior in solid mechanics, to date there has been relatively little explicit identification of stress singularities caused by fluid flows. In this study, stress and pressure singularities induced by steady flows of viscous incompressible fluids are asymptotically identified. This is done by taking advantage of an earlier result that the Navier-Stokes equations are locally governed by Stokes flow in angular corners. Findings for power singularities are confirmed by developing and using an analogy with solid mechanics. This analogy also facilitates the identification of flow-induced log singularities. Both types of singularity are further confirmed for two global configurations by applying convergence-divergence checks to numerical results. Even though these flow-induced stress singularities are analogous to singularities in solid mechanics, they nonetheless render a number of structural configurations singular that were not previously appreciated as such from identifications within solid mechanics alone.  相似文献   

2.
The paradox of destabilization of a conservative or non-conservative system by small dissipation,or Ziegler’s paradox(1952),has stimulated a growing interest in the sensitivity of reversible and Hamiltonian systems with respect to dissipative perturbations.Since the last decade it has been widely accepted that dissipation-induced instabilities are closely related to singularities arising on the stability boundary,associated with Whitney’s umbrella.The first explanation of Ziegler’s paradox was given(much earlier)by Oene Bottema in 1956.The aspects of the mechanics and geometry of dissipation-induced instabilities with an application to rotor dynamics are discussed.  相似文献   

3.
In this note the velocity field and the adequate shear stress corresponding to the unsteady flow of a fractional Maxwell fluid due to a constantly accelerating circular cylinder have been determined by means of the Laplace and finite Hankel transforms.The obtained solutions satisfy all imposed initial and boundary conditions.They can easily be reduced to give similar solutions for ordinary Maxwell and Newtonian fluids.Finally,the influence of pertinent parameters on the fluid motion,as well as a comparison between models,is underlined by graphical illustrations.  相似文献   

4.
Asymptotic stress and deformation fields under the contact point singularities of a nearly-flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals with three effective in-plane slip systems that admit a plane strain deformation state. Face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crystals are considered. The asymptotic fields for the flat punch are analogous to those at the tip of a stationary crack, so a potential solution is that the deformation field consists entirely of angular constant stress plastic sectors separated by rays of plastic deformation across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge indenter are analogous to those of a quasistatically growing crack tip fields in that stress discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under the contact point singularities of a nearly-flat wedge indenter are significantly different than those under a flat punch. A family of solutions is derived that consists entirely of elastically deforming angular sectors separated by rays of plastic deformation across which the stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is shown that the asymptotic fields for HCP crystals must include at least one angular constant stress plastic sector. The structure of such fields is important because they play a significant role in the establishment of the overall fields under a wedge indenter in a single crystal. Numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the contact point singularity of a wedge indenter for a FCC crystal possess the salient features of the analytical solution.  相似文献   

5.
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically.  相似文献   

6.
The unsteady flow of an incompressible fractional Maxwell fluid between two infinite coaxial cylinders is studied by means of integral transforms.The motion of the fluid is due to the inner cylinder that applies a time dependent torsional shear to the fluid.The exact solutions for velocity and shear stress are presented in series form in terms of some generalized functions.They can easily be particularized to give similar solutions for Maxwell and Newtonian fluids.Finally,the influence of pertinent parameters on the fluid motion,as well as a comparison between models,is highlighted by graphical illustrations.  相似文献   

7.
This is a series of studies on Wu’s conjecture and on its resolution to be presented herein. Both are devoted to expound all the comprehensive properties of Cauchy’s function f(z) (z = x + iy) and its integral J[f(z) ] ≡(2πi) -1 C f(t)(t z) -1dt taken along the unit circle as contour C,inside which(the open domain D+) f(z) is regular but has singularities distributed in open domain Doutside C. Resolution is given to the inverse problem that the singularities of f(z) can be determined in analytical form in terms of the values f(t) of f(z) numerically prescribed on C(|t| = 1) ,as so enunciated by Wu’s conjecture. The case of a single singularity is solved using complex algebra and analysis to acquire the solution structure for a standard reference. Multiple singularities are resolved by reducing them to a single one by elimination in principle,for which purpose a general asymptotic method is developed here for resolution to the conjecture by induction,and essential singularities are treated with employing the generalized Hilbert transforms. These new methods are applicable to relevant problems in mathematics,engineering and technology in analogy with resolving the inverse problem presented here.  相似文献   

8.
Damaged nonlinear antiplane shear problems with a variety of singularities are studied analytically. A deformation plasticity theory coupled with damage is employed in analysis. The effect of microscopic damage is considered in terms of continuum damage mechanics approach. An exact solution for the general damaged nonlinear singular antiplane shear problem is derived in the stress plane by means of a hodograph transformation, then corresponding higher order asymptotic solutions are obtained by reversing the stress plane solution to the physical plane. As example, traction free sharp notch and crack, rigid sharp wedge and flat inclusion, and mixed boundary sharp notch problems are investigated, respectively. Consequently, higher order fields are obtained, in which analytical expressions of the dominant and second order singularity exponents and angular distribution functions of the near tip fields are derived. Effects of the damage and hardening exponents of materials and the geometric angle of notch/wedge on the near tip quantities are discussed in detail. It is found that damage leads to a weaker dominant singularity of stress, but to little stronger singularities of the dominant and second order terms of strain compared to that for undamaged material. It is also seen that damage has important effect on the angular distribution functions of the near tip stress and strain fields. As special cases, higher order analytical solutions of the crack and rigid flat inclusion tip fields are obtained, respectively, by reducing the notch/wedge tip solutions. Effects of damage and hardening exponents on the dominant and second order terms in the solutions of the crack and inclusion tip fields are discussed.  相似文献   

9.
采用弹性-粘塑性本构模型,对幂硬化粘塑性介质中反平面剪切动态扩展裂纹尖端的应力,应变场进行了渐近分析,给出了反平面剪切动态扩展纹尖端场的渐进方程。分析结果表明,在裂纹法端应力具有(lnR/r)1/n-1的奇异性,应变具有(lnR/Rn/n-1的奇异性。从而提示了幂硬化粘塑材料反平面剪动态扩展裂纹尖端场的渐近行为。  相似文献   

10.
The stress and strain singularities of power hardening material for Mode I fracrure are analysed according to the fundamental equations of elastic-plastic mechanics. It is found that the singularities of all stress and strain components do not change in the thick direction, and neither the six stress components nor the six strain components have the same singularity.  相似文献   

11.
Calculations of viscoelastic flows using the upper-convected Maxwell (UCM) model in geometries which include sharp corners or moving and free liquid/fluid contact lines are known to be non-convergent with mesh refinement. A modified upper-convected Maxwell (MUCM) model is proposed which partially alleviates this difficulty. The MUCM model is derivable from network theory and allows the fluid relaxation time to decrease at increasing values of the trace of the stress tensor. The MUCM model yields stress fields that reduce to the a symptotic expressions for a Newtonian fluid near singularities at non-deformable boundaries. Calculations using a Galerkin finite element method are presented for the planar stick-slip problem of the flow between two no-slip surfaces joined to two shear-free surfaces. Results for fine meshes show the correct asymptotic behavior near the singularity for the MUCM model and converge to much higher values of the Deborah number than for the UCM model. However, the results for the MUCM model are still constrained by numerical instabilities related to approximating the stress behavior near the singularity.  相似文献   

12.
Yildirim  B.  Yilmaz  K. B.  Comez  I.  Guler  M. A. 《Meccanica》2019,54(14):2183-2206

With the increasing research in the field of contact mechanics, different types of contact models have been investigated by many researchers by employing various complex material models. To ascertain the orthotropy effect and modeling parameters on a receding contact model, the double frictional receding contact problem for an orthotropic bilayer loaded by a cylindrical punch is taken into account in this study. Assuming plane strain sliding conditions, the governing equations are found analytically using Fourier integral transformation technique. Then, the resulting singular integral equations are solved numerically using an iterative method. The weight function describing the asymptotic behavior of the stresses are investigated in detail and powers of the stress singularities are provided. To control the trustworthiness and correctness of the analytical formulation and to compare the resulting stress distributions and contact boundaries, a numerically efficient finite element method was employed using augmented Lagrange contact algorithm. The aim of this paper is to investigate the orthotropy effect, modeling parameters and coefficients of friction on the surface and interface stresses, surface and interface contact boundaries, powers of stress singularities, weight function and to provide highly parametric benchmark results for tribological community in designing wear resistant systems.

  相似文献   

13.
To fill the gap in the literature on the application of three-dimensional elasticity theory to geometrically induced stress singularities, this work develops asymptotic solutions for Williams-type stress singularities in bodies of revolution that are made of rectilinearly anisotropic materials. The Cartesian coordinate system used to describe the material properties differs from the coordinate system used to describe the geometry of a body of revolution, so the problems under consideration are very complicated. The eigenfunction expansion approach is combined with a power series solution technique to find the asymptotic solutions by directly solving the three-dimensional equilibrium equations in terms of the displacement components. The correctness of the proposed solution is verified by convergence studies and by comparisons with results obtained using closed-form characteristic equations for an isotropic body of revolution and using the commercial finite element program ABAQUS for orthotropic bodies of revolution. Thereafter, the solution is employed to comprehensively examine the singularities of bodies of revolution with different geometries, made of a single material or bi-materials, under different boundary conditions.  相似文献   

14.
Describing the behaviors of stress singularities correctly is essential for obtaining accurate numerical solutions of complicated problems with stress singularities. This analysis derives asymptotic solutions for functionally graded material (FGM) thin plates with geometrically induced stress singularities. The classical thin plate theory is used to establish the equilibrium equations for FGM thin plates. It is assumed that the Young’s modulus varies along the thickness and Poisson’s ratio is constant. The eigenfunction expansion method is employed to the equilibrium equations in terms of displacement components for an asymptotic analysis in the vicinity of a sharp corner. The characteristic equations for determining the stress singularity order at the corner vertex and the corresponding corner functions are explicitly given for different combinations of boundary conditions along the radial edges forming the sharp corner. The non-homogeneous elasticity properties are present only in the characteristic equations corresponding to boundary conditions involving simple support. Finally, the effects of material non-homogeneity following a power law on the stress singularity orders are thoroughly examined by showing the minimum real values of the roots of the characteristic equations varying with the material properties and vertex angle.  相似文献   

15.
A crack terminating at an interface of two dissimilar elastic materials is investigated. It is found that the asymptotic stress field near the crack tip is in general composed of two parts with each part being characterized by one singularity. The detailed relation of the two singularities with the bimaterial properties is given for some special cases of the crack.  相似文献   

16.
This work is devoted to the study of steady thermocapillary-buoyant convection in a system of two horizontal superimposed immiscible liquid layers filling a lateral heated thin annular pool.The governing equations are solved using an asymptotic theory for the aspect ratios ε→ 0.Asymptotic solutions of the velocity and temperature fields are obtained in the core region away from the cylinder walls.In order to validate the asymptotic solutions,numerical simulations are also carried out and the results are compared to each other.It is found that the present asymptotic solutions are valid in most of the core region.And the applicability of the obtained asymptotic solutions decreases with the increase of the aspect ratio and the thickness ratio of the two layers.For a system of gallium arsenide (lower layer) and boron oxide (upper layer),the buoyancy slightly weakens the thermocapillary convection in the upper layer and strengthens it in the lower layer.  相似文献   

17.
The shock response of a submerged system consisting of two co-axial cylindrical shells coupled with the fluid filling the inter-shell space is considered. The shock–structure interaction is modeled using a semi-analytical methodology based on the use of the classical apparatus of mathematical physics. Both the fluid and structural dynamics of the interaction is addressed, with special attention paid to the interplay between the two. It is demonstrated that the wave effects due to multiple reflections of the pressure waves travelling in the inter-shell fluid to a large degree determine the structural dynamics of the system, but have a more pronounced effect on the outer shell than on the inner one. It is also established that the effect of changing the thickness of the outer shell on the stress–strain state of the inner shell is incomparably more pronounced than vice versa. The investigation culminates with the results of a parametric study of the overall peak stress in the system, an example of utilizing the approach developed based on the introduced model and aiming at facilitating structural optimization of industrial systems at the pre-design stage in the context of shock resistance.  相似文献   

18.
We derive a novel integral equation relating the fluid pressure in a finger-like hydraulic fracture to the fracture width. By means of an asymptotic analysis in the small height to length ratio limit we are able to establish the action of the integral operator for receiving points that lie within three distinct regions: (1) an outer expansion region in which the dimensionless pressure is shown to be equal to the dimensionless width plus a small correction term that involves the second derivative of the width, which accounts for the nonlocal effects of the integral operator. The leading order term in this expansion is the classic local elasticity equation in the PKN model that is widely used in the oil and gas industry; (2) an inner expansion region close to the fracture tip within which the action of the elastic integral operator is shown to be the same as that of a finite Hilbert transform associated with a state of plane strain. This result will enable pressure singularities and stress intensity factors to be incorporated into analytic models of these finger-like fractures in order to model the effect of material toughness; (3) an intermediate region within which the action of the Fredholm integral operator of the first kind is reduced to a second kind operator in which the integral term appears as a small perturbation which is associated with a convergent Neumann series. These results are important for deriving analytic models of finger-like hydraulic fractures that are consistent with linear elastic fracture mechanics. Submitted to Journal of Elasticity on February 5, 2007. Re-submitted with revisions on May 30, 2007.  相似文献   

19.
Deforming a cracked magnetoelastic body in a magnetic field induces a perturbed magnetic field around the crack. The quantitative relationship between this perturbed field and the stress around the crack is crucial in developing a new generation of magnetism-based nondestructive testing technologies. In this paper, an analytical expression of the perturbed magnetic field induced by structural deforma- tion of an infinite ferromagnetic elastic plate containing a centered crack in a weak external magnetic field is obtained by using the linearized magnetoelastic theory and Fourier transform methods. The main finding is that the perturbed magnetic field intensity is proportional to the applied tensile stress, and is dominated by the displacement gradient on the boundary of the magnetoelastic solid. The tangential component of the perturbed magnetic-field intensity near the crack exhibits an antisymmetric distribution along the crack that reverses its direction sharply across its two faces, while the normal component shows a symmetric distribution along the crack with singular points at the crack tips.  相似文献   

20.
This study explores the fluid mechanics and force generation capabilities of an inverted heaving airfoil placed close to a moving ground using a URANS solver with the Spalart-Allmaras turbulence model. By varying the mean ground clearance and motion frequency of the airfoil, it was possible to construct a frequency-height diagram of the various forces acting on the airfoil. The ground was found to enhance the downforce and reduce the drag with respect to freestream. The unsteady motion induces hysteresis in the forces’ behaviour. At moderate ground clearance, the hysteresis increases with frequency and the airfoil loses energy to the flow, resulting in a stabilizing motion. By analogy with a pitching motion, the airfoil stalls in close proximity to the ground. At low frequencies, the motion is unstable and could lead to stall flutter. A stall flutter analysis was undertaken. At higher frequencies, inviscid effects overcome the large separation and the motion becomes stable. Forced trailing edge vortex shedding appears at high frequencies. The shedding mechanism seems to be independent of ground proximity. However, the wake is altered at low heights as a result of an interaction between the vortices and the ground.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号