首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
Molecular dynamics simulations of nanocrys-talline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10 8 s 1 , 10 9 s 1 and 10 10 s 1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uniaxial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.  相似文献   

2.
Molecular dynamics (MD) simulations are performed to study adhesion and peeling of a short fragment of single strand DNA (ssDNA) molecule from a graphite surface. The critical peel-off force is found to depend on both the peeling angle and the elasticity of ssDNA. For the short ssDNA strand under investigation, we show that the simulation results can be explained by a continuum model of an adhesive elastic band on substrate. The analysis suggests that it is often the peak value, rather than the mean value, of adhesion energy which determines the peeling of a nanoscale material.The project supported by the Distinguished Young Scholar Fund of NSFC (10225209) and key project from the Chinese Academy of Sciences (KJCX2-SW-L2)  相似文献   

3.
控制棒驱动机构(CRDM)在步跃提升时,钩爪部件会与承压壳体上的提升磁极发生面面碰撞。本文基于混合坐标法建立控制棒驱动机构有限元离散的刚-柔耦合动力学方程,用罚函数法计算了钩爪部件与承压壳体之间的碰撞力和应力分布情况。结果表明,刚柔耦合多体方法在仿真小变形碰撞时可以提高计算效率,同时又能达到与有限元方法同等的精度。进一步对碰撞模型不同区域的网格疏密和尺寸大小做了定量分析,得到了降低有限元网格数量的方法,可为工程中碰撞模型的网格划分提供参考。  相似文献   

4.
Free transverse vibration of monolayer graphene, boron nitride (BN), and silicon carbide (SiC) sheets is inves-tigated by using molecular dynamics finite element method. Eigenfrequencies and eigenmodes of these three sheets in rectangular shape are studied with different aspect ratios with respect to various boundary conditions. It is found that aspect ratios and boundary conditions affect in a similar way on nat-ural frequencies of graphene, BN, and SiC sheets. Natural frequencies in all modes decrease with an increase of the sheet's size. Graphene exhibits the highest natural frequen-cies, and SiC sheet possesses the lowest ones. Missing atoms have minor effects on natural frequencies in this study.  相似文献   

5.
The effect of distributed bubble nuclei sizes on shock propagation in a bubbly liquid is numerically investigated. An ensemble-averaged technique is employed to derive the statistically averaged conservation laws for polydisperse bubbly flows. A finite-volume method is developed to solve the continuum bubbly flow equations coupled to a single-bubble-dynamic equation that incorporates the effects of heat transfer, liquid viscosity and compressibility. The one-dimensional shock computations reveal that the distribution of equilibrium bubble sizes leads to an apparent damping of the averaged shock dynamics due to phase cancellations in oscillations of the different-sized bubbles. If the distribution is sufficiently broad, the phase cancellation effect can dominate over the single-bubble-dynamic dissipation and the averaged shock profile is smoothed out.  相似文献   

6.
For shell-and-tube heat exchangers, tubesheet cracking is a major failure form. Owing to complicated structures, loadings and environments, mechanisms for the crack nucleation and propagation often puzzle engineers and as a result, it is hard to take effective measures to prevent this kind of failure from happening again. In this paper, three dimensional finite element models were established to investigate a real tubesheet cracking with the emphasis on the driving forces for the crack propagation from a fracture mechanics point of view. Three different loadings, namely residual expansion stress, crack face pressure and transverse pressure, and three crack growth patterns were considered. In order to obtain the residual stresses, the hydraulic expanding process of tube-to-tubesheet joint was simulated. Residual contact pressures between the tube and tubesheet and the induced residual stress distributions in the tubesheet were computed. The possibility for crack propagation in the tubesheet under the action of the different loadings was investigated in terms of the strain energy density factor. Results show that surface crack propagation may be driven by all the three loadings especially the transverse pressure. But when surface cracks come into the interior of the tubesheet along the thickness, as acted along the whole tubesheet thickness, the residual expansion stress would play key roles in crack propagation.  相似文献   

7.
The aim of this work is to provide an improved information exchange in hierarchical atomistic-to-continuum settings by applying stochastic approximation methods. For this purpose a typical model belonging to this class is chosen and enhanced. On the macroscale of this particular two-scale model, the balance equations of continuum mechanics are solved using a nonlinear finite element formulation. The microscale, on which a canonical ensemble of statistical mechanics is simulated using molecular dynamics, replaces a classic material formulation. The constitutive behavior is computed on the microscale by computing time averages. However, these time averages are thermal noise-corrupted as the microscale may practically not be tracked for a sufficiently long period of time due to limited computational resources. This noise prevents the model from a classical convergence behavior and creates a setting that shows remarkable resemblance to iteration schemes known from stochastic approximation. This resemblance justifies the use of two averaging strategies known to improve the convergence behavior in stochastic approximation schemes under certain, fairly general, conditions. To demonstrate the effectiveness of the proposed strategies, three numerical examples are studied.  相似文献   

8.
D. Q. Xu  H. Honma 《Shock Waves》1991,1(1):43-49
A numerical simulation was performed for the process of formation of single Mach reflection on a wedge by solving a BGK type kinetic equation for the reduced distribution function with a finite difference scheme. The calculations were carried out for a shock Mach number 2.75 and wedge angle 25° in a monatomic gas, which corresponds to the conditions of single Mach reflection in the classical von Neumann theory. The calculations were performed for both diffuse and specular reflection of molecules at the wall surface. It is concluded that the diffuse reflection of molecules at the wall surface or the existence of the viscous or thermal layer is an essential factor for a nonstationary process at the initial stage of Mach reflection. Furthermore, the numerical results for diffuse reflection are found to simulate the experimental results very well, such as a transient process from regular reflection to Mach reflection along with shock propagation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

9.
A solution is presented for the three dimensional static thermoelastic problem of an absolutely rigid inclusion (anticrack) in the case when a uniform heat flow is directed along the inclusion plane. By using the potential method and the Fourier transform technique, the problem is reduced to a system of coupled two-dimensional singular integral equations for the shear stress jumps across the inclusion. As an illustration, a typical application to the circular anticrack is presented. Explicit expressions for the thermal stresses in the inclusion plane are obtained and discussed from the point of view of material failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号