首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations are reported on polypropylene/polyethylene blends with various concentrations of components in uniaxial tensile tests with constant strain rates, relaxation tests, and creep tests at room temperature. A model is developed for the viscoelastic and viscoplastic responses of polymer blends at arbitrary three-dimensional deformation with small strains. Material constants in the constitutive equations are determined by fitting the experimental data. It is found that all adjustable parameters evolve with blend composition following an analog of the rule of mixture. Lifetime of blends under condition of creep rupture is evaluated by numerical simulation.  相似文献   

2.


岩石在蠕变的过程中其基本力学参数变形模量E、内聚力c和内摩擦角是随时间和应力逐渐弱化的。本文对现行蠕变设备特点进行分析,研制了一套新型的五联单轴蠕变仪,此仪器能够在相同的应力条件下同时进行5个试件的蠕变试验。并且使用该仪器对宝鸡市秦源煤矿泥岩的力学参数E、c、在蠕变试验中的弱化规律进行了研究。提出了把粘塑性应变作为泥岩力学参数弱化的指标,得出了泥岩E、c、随粘塑性应变呈指数衰减的函数关系,并计算了该泥岩破坏时的E、c、。对该泥岩E、c、和粘塑性应变的函数关系式进行了分析,得到了岩石E、c、和应力(σ)以及时间(t)的耦合函数方程,为后续岩石非定常本构模型的研究奠定了基础。
力学参数〓时效性〓蠕变仪〓蠕变试验          


  相似文献   

3.
Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress–strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation. It is shown that observations in conventional creep tests reflect not only the viscoelastic, but also the viscoplastic behavior of an ensemble of meso-regions.  相似文献   

4.
A viscoplastic model accounting for developing damage in concrete is proposed by assuming the rate of damage to be dependent on viscous strain and stress rates. The damage is measured by a scalar parameter affecting both the yield stress and the material viscosity. For a post-critical range of deformation, the localized mode occurs for which additional constitutive equations are specified. The model is applied to simulate uniaxial strain rate controlled and creep response for the concrete.  相似文献   

5.
State variables have been used to represent the material resistance to plastic deformation in the recent development of the viscoplastic constitutive equations. In a previous paper, an experimental method was suggested to identify the relative roles to be played by the scalar state variable (drag stress) and the tensorial state variable (back stress) in the state-variable based constitutive equations. The results on 2618-T61 aluminum alloy tested at 200°C suggested that the scalar state variable alone should be enough to model the experimental results of 2618-T61 aluminum alloy.

In the current work, an early version of the viscoplastic constitutive equation proposed by Bodner and Partom, which was formulated with one scalar state variable, was adopted to model the experimental results of 2618-T61 aluminum. Experiments included creep tests under stepwise loadings, controlled-strain-rate tests, and creep tests under nonproportional loadings. A constitutive equation based on strain hardening approach, which was developed in an earlier work, was also studied.

In order to improve the results of the Bodner and Partom's model, a recovery term which was an explicit function of the time exposed to the test temperature was suggested for the scalar state variable. Aging was discussed as one possible softening mechanism for the current material.  相似文献   


6.
Experimental data are reported on isotactic polypropylene in uniaxial cyclic tensile tests with various maximum strains at room temperature. It is demonstrated that polypropylene reveals all characteristic features (hysteresis of energy, damage accumulation, and strain-hardening) of the Mullins effect. Constitutive equations are derived for the viscoplastic behavior of semicrystalline polymers at three-dimensional deformations with small strains. Adjustable parameters in the stress?Cstrain relations are found by fitting the observations. Numerical simulation shows that the model adequately predicts the viscoplastic response of polypropylene in uniaxial and biaxial cyclic tests.  相似文献   

7.
Three series of uniaxial tensile tests with constant strain rates are performed at room temperature on isotactic polypropylene and two commercial grades of low-density polyethylene with different molecular weights. Constitutive equations are derived for the viscoplastic behavior of semicrystalline polymers at finite strains. A polymer is treated as an equivalent network of strands bridged by permanent junctions. Two types of junctions are introduced: affine whose micro-deformation coincides with the macro-deformation of a polymer, and non-affine that slide with respect to their reference positions. The elastic response of the network is attributed to elongation of strands, whereas its viscoplastic behavior is associated with sliding of junctions. The rate of sliding is proportional to the average stress in strands linked to non-affine junctions. Stress–strain relations in finite viscoplasticity of semicrystalline polymers are developed by using the laws of thermodynamics. The constitutive equations are applied to the analysis of uniaxial tension, uniaxial compression and simple shear of an incompressible medium. These relations involve three adjustable parameters that are found by fitting the experimental data. Fair agreement is demonstrated between the observations and the results of numerical simulation. It is revealed that the viscoplastic response of low-density polyethylene in simple shear is strongly affected by its molecular weight.  相似文献   

8.
Exact solutions for the time-dependent creep behavior of a two-phase material with a lamellar microstructure are derived as a function of volume concentration and the properties of its constituents. Each phase is taken to be elastic–viscoplastic, exhibiting work-hardening characteristics. The derivation takes advantage of the condition of interfacial discontinuities over the interfaces, with a result given in a rate form for the general combined loading. Specific overall creep strains are presented along five distinctive loading directions for two kinds of viscoplastic composites: one involving an elastic and a viscoplastic phases and the other with dual viscoplastic phases. In addition to providing insightful information for the overall time-dependent creep, the exact nature of the results can also serve as a bench mark to test the accuracy of the approximate theories. In this light a secant-viscosity approach recently developed for a particle-reinforced solid (Li and Weng (1997). A secant-viscosity approach to the time-dependent creep of an elastic–viscoplastic composite. J. Mech. Phys. Solids, 45, 1069) is extended to a lamellar structure and the results are tested against these exact solutions. Comparison between the two indicates that the secant-viscosity concept is a sufficiently accurate one and it can be applied to composites with other types of microgeometries.  相似文献   

9.
The response of a polymer (polytetrafluoroethylene) to quasi-static and dynamic loading is determined and modeled. The polytetrafluoroethylene is extremely ductile and highly nonlinear in elastic as well as plastic behaviors including elastic unloading. Constitutive model developed earlier by Khan, Huang and Liang (KHL) is extended to include the responses of polymeric materials. The strain rate hardening, creep, and relaxation behaviors of polytetrafluoroethylene were determined through extensive experimental study. Based on the observation that both viscoelastic and viscoplastic deformation of polytetrafluoroethylene are time dependent and nonlinear, a phenomenalogical viscoelasto–plastic constitutive model is presented by a series connection of a viscoelastic deformation module (represented by three elements standard solid spring dashpot model), and a viscoplastic deformation module represented by KHL model. The KHL module is affected only when the stress exceeds the initial yield stress. The comparison between the predictions from the extended model and experimental data for uniaxial static and dynamic compression, creep and relaxation demonstrate that the proposed constitutive model is able to represent the observed time dependent mechanical behavior of polytetrafluoroethylene polytetrafluoroethylene qualitatively and quantitatively.  相似文献   

10.
Molecular dynamics simulations of nanocrys-talline Cu with average grain sizes of 3.1 nm, 6.2 nm, 12.4 nm and 18.6 nm under uniaxial strain and stress tension at strain rates of 10 8 s 1 , 10 9 s 1 and 10 10 s 1 are performed to study the combined grain size, strain rate and loading condition effects on mechanical properties. It is found that the strength of nanocrystalline Cu increases as grain size increases regardless of loading condition. Both the strength and ductility of nanocrystalline Cu increase with strain rate except that there is no monotonic relation between the strength and strain rate for specimens under uniaxial strain loading. Moreover, the strength and ductility of specimens under uniaxial strain loading are lower than those under uniaxial stress loading. The nucleation of voids at grain boundaries and their subsequent growth characterize the failure of specimens under uniaxial strain loading, while grain boundary sliding and necking dominate the failure of specimens under uniaxial stress loading. The rate dependent strength is mainly caused by the dynamic wave effect that limits dislocation motion, while combined twinning and slipping mechanism makes the material more ductile at higher strain rates.  相似文献   

11.
为了克服传统元件组合模型不能描述岩石蠕变过程中非线性特征的缺陷,首先根据加速蠕变阶段的应变和应变率随蠕变时间急剧增大的特点,建立黏塑性应变与蠕变时间的指数函数关系并提出非线性黏塑性体.将该非线性黏塑性体与广义Burgers蠕变模型串联,建立可以描述岩石全蠕变过程的非线性黏弹塑性蠕变模型,根据叠加原理得到一维应力状态下的轴向蠕变方程.然后基于塑性力学理论指出岩石三维蠕变本构方程建立过程中的不足之处,并给出非线性黏弹塑性蠕变模型合理的三维蠕变方程.最后采用不同应力水平下砂岩轴向蠕变试验对模型合理性进行验证,结果表明:拟合曲线与试验曲线吻合度较高,所建蠕变模型能够很好地描述砂岩在不同应力水平下的蠕变变形规律,尤其对加速蠕变阶段的非线性特征描述效果很好,验证了模型的合理性.  相似文献   

12.
为了了解深部软岩在冻结条件下的单轴力学性能,以东北地区的原状泥砂岩为试验对象,利用自行研制的WDT-100型人工冻土试验仪器,对其进行不同温度下的人工冻土单轴抗压强度试验和单轴蠕变试验,得到泥砂岩单轴压缩应力-应变关系曲线,各温度下试样的单轴抗压强度以及蠕变曲线.单轴压缩试验结果表明:试样在给定温度和加载速率条件下,单轴压缩应力-应变关系曲线都有较为明显的屈服点,并且都在屈服点后,强度有所提高,出现硬化现象.单轴蠕变试验结果表明:单轴压缩蠕变曲线有非线性特征,单轴压缩蠕变的等时应力-应变曲线向应变轴靠拢;单轴压缩时蠕变模量随时间的增长而降低.最后采用遗传算法优化模型参数,得出泥砂岩蠕变经验方程.与试验结果对比,发现拟合情况较好.  相似文献   

13.
The formulation of a general model for the hereditary behavior of materials, in the viscoelastic and viscoplastic regimes, is presented. In this, we utilize the complete-potential structure as a general framework, together with the notion of strain- and stress- partitioning in terms of separate contributions of several submechanisms (viscoelastic and viscoplastic) to the thermodynamic functions (stored energy and dissipation). Detailed numerical treatments are given for both (i) the implicit integration algorithm for the governing flow and evolutionary rate equations of the model, and (ii) the automated parameter-estimation methodology (using the software code COMPARE) for characterization. For illustration, a specific form of the model presented is characterized for the TIMETAL 21S material using a very comprehensive test matrix, including creep, relaxation, constant strain-rate tension tests, etc. Discussion of these correlations tests, together with comparisons to several other experimental results, are given to assess the performance and predictive capabilities of the present model as well as the effectiveness and practical utility of the algorithms proposed.  相似文献   

14.
A procedure for determining a phenomenological elastic/viscoplastic nonassociated constitutive equation for geomaterials is presented. For this purpose, triaxial test data obtained with either a “true” or a classical triaxial device are necessary. The constitutive equation is aimed at describing such geomaterial properties as creep, irreversible compressibility or dilatancy, work-hardening, damage, and failure. Long-term failure can also be described with this model. According to the procedure, first the elastic parameters are determined from unloading tests (which follow short-term creep tests), then the yield function is determined, and finally the viscoplastic potential. No a priori assumption is made concerning the form of the yield function or of the viscoplastic potential; their expressions are obtained from the data by using the procedure suggested here. Examples for sand and rock salt are given. Comparisons of the model predictions with the experimental data are discussed.  相似文献   

15.
A mathematical model is developed within the framework of equations of damaged medium mechanics to describe the processes of viscoplastic straining and damage accumulation in structural steels with allowance for fatigue and creep of the material. A model of damage summation due to interaction of low-cycle fatigue and creep of the material is proposed. Material parameters and scalar functions of equations of mechanics of damaged media are determined. Viscoplastic straining and fatigue-induced damage accumulation in 08Kh18N10T and 12Kh18N9 are studied numerically, and the data obtained are compared with available results of physical experiments.  相似文献   

16.
A previously proposed first order non-linear differential equation for uniaxial viscoplasticity, which is non-linear in stress and strain but linear in stress and strain rates, is transformed into an equivalent integral equation. The proposed equation employs total strain only and is symmetric with respect to the origin and applies for tension and compression. The limiting behavior for large strains and large times for monotonic, creep and relaxation loading is investigated and appropriate limits are obtained. When the equation is specialized to an overstress model it is qualitatively shown to reproduce key features of viscoplastic behavior. These include: initial linear elastic or linear viscoelastic response: immediate elastic slope for a large instantaneous change in strain rate normal strain rate sensitivity and non-linear spacing of the stress-strain curves obtained at various strain rates; and primary and secondary creep and relaxation such that the creep (relaxation) curves do not cross. Isochronous creep curves are also considered. Other specializations yield wavy stress-strain curves and inverse strain rate sensitivity. For cyclic loading the model must be modified to account for history dependence in the sense of plasticity.  相似文献   

17.
为合理描述人工冻结法施工的矿井土层力学特性,对某矿井土样的重塑土进行单轴抗压强度实验和单轴压缩蠕变实验,得到重塑冻结黏土在不同温度及载荷加载等级下的应力-应变曲线和蠕变曲线。实验结果表明:冻结温度越低,土样的单轴强度越大;相同冻结温度下,土样的蠕变变形随着应力水平的升高而增大。单轴压缩蠕变的等时应力-应变曲线随时间发展向应变轴靠拢;土样经历初始蠕变和等速蠕变两个阶段,在较高应力水平下有进入加速蠕变的趋势;对S-M模型中各参数的意义进行修正并考虑温度的影响,得到人工冻结黏土改进S-M蠕变显式模型,然后采用粒子群算法对人工冻结黏土S-M蠕变模型参数进行优化。改进S-M蠕变显式模型理论计算值与实验值吻合良好,表明改进S-M蠕变显式模型能较好模拟人工冻结黏土的蠕变特性。改进S-M蠕变显式模型为人工冻土蠕变计算提供一种新方法。  相似文献   

18.
Observations are reported on isotactic polypropylene in uniaxial cyclic tensile tests at room temperature. A model is derived for the viscoplastic response of semicrystalline polymers at three-dimensional deformations with small strains. Adjustable parameters in the stress–strain relations are found by fitting the experimental data. It is shown that polypropylene reveals some characteristic features of the Mullins effect that can be quantitatively predicted by the constitutive equations.  相似文献   

19.
Übersicht Eine Äquivalenzaussage über Fließen, Verfestigung und Erfüllung der Belastungsbedingung führt zu einfachen viskoplastischen Stoffgesetzen, die als Grenzfall Kriechen und Plastizität enthalten. Ein hierauf abgestimmtes numerisches Verfahren erweist sich als besonders flexibel und rechengünstig. Dieses wird durch Vergleich mit Versuchsergebnissen und anderen Rechenverfahren gezeigt.
Summary An equivalence Statement on flow, hardening and fulfilling of the loading condition leads to simple viscoplastic material equations which include creep and plasticity as limit cases. A numerical algorithm, based on the derived equations proves to be very flexible and efficient. This is shown by means of comparisons with test results and other computations.
  相似文献   

20.
Multiaxial creep and cyclic plasticity in nickel-base superalloy C263   总被引:1,自引:0,他引:1  
Physically-based constitutive equations for uniaxial creep deformation in nickel alloy C263 [Acta Mater. 50 (2002) 2917] have been generalised for multiaxial stress states using conventional von Mises type assumptions. A range of biaxial creep tests have been carried out on nickel alloy C263 in order to investigate the stress state sensitivity of creep damage evolution. The sensitivity has been quantified in C263 and embodied within the creep constitutive equations for this material. The equations have been implemented into finite element code. The resulting computed creep behaviour for a range of stress state compares well with experimental results. Creep tests have been carried out on double notched bar specimens over a range of nominal stress. The effect of the notches is to introduce multiaxial stress states local to the notches which influences creep damage evolution. Finite element models of the double notch bar specimens have been developed and used to test the ability of the model to predict correctly, or otherwise, the creep rupture lifetimes of components in which multiaxial stress states exist. Reasonable comparisons with experimental results are achieved. The γ solvus temperature of C263 is about 925 °C, so that thermo-mechanical fatigue (TMF) loading in which the temperature exceeds the solvus leads to the dissolution of the γ precipitate, and a resulting solution treated material. The cyclic plasticity and creep behaviour of the solution treated material is quite different to that of the material with standard heat treatment. A time-independent cyclic plasticity model with kinematic and isotropic hardening has been developed for solution treated and standard heat treated nickel-base superalloy C263. It has been combined with the physically-based creep model to provide constitutive equations for TMF in C263 over the temperature range 20–950 °C, capable of predicting deformation and life in creep cavitation-dominated TMF failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号