首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly luminescent thioglycolic acid-capped CdTe-based core/shell quantum dots (QDs) were synthesized through encapsulating CdTe QDs in various inorganic shells including CdS, ZnS and CdZnS. CdTe/CdS core/shell QDs exhibited a significant redshift of emission peaks (a maximum emission peak of 652 nm for the core/shell QDs and 575 nm for CdTe cores) with increasing shell thickness. In contrast, the redshift of photoluminescence (PL) peak wavelength of CdTe/ZnS QDs was less than 15 nm. The PL peak wavelengths of the core/shell QDs depended strongly on core size and shell thickness. The PL quantum yields (QYs) of the CdTe/CdS core/shell QDs are up to 67 % while that of CdTe/ZnS core/shell QDs is 45 %. A composite CdZnS shell made CdTe cores a high PL QY up to 51 % and broadly adjusted PL spectra (a maximum PL peak wavelength of 664 nm). The epitaxial growth of the shell was confirmed by X-ray powder diffraction analysis and luminescence decay experiments. Because of high PL QYs, tunable PL spectra, and low toxicity from a ZnS surface layer, CdTe/CdZnS core/shell QDs will be great potential for bioapplications.  相似文献   

2.
以亚碲酸钠为碲源,硼氢化钠为还原剂,一步合成了巯基丁二酸(MSA)稳定的CdTe量子点.研究了反应液pH值、镉与碲的摩尔比及镉与巯基丁二酸的摩尔比等实验条件对CdTe量子点体系荧光量子产率的影响,并用荧光光谱、X射线粉末衍射及透射电子显微镜等对其进行了表征.结果表明,CdTe量子点具有闪锌矿结构,形貌呈球状;在pH=1...  相似文献   

3.
Successive ion layer adsorption and reaction (SILAR) originally developed for the deposition of thin films on solid substrates from solution baths is introduced as a technique for the growth of high-quality core/shell nanocrystals of compound semiconductors. The growth of the shell was designed to grow one monolayer at a time by alternating injections of air-stable and inexpensive cationic and anionic precursors into the reaction mixture with core nanocrystals. The principles of SILAR were demonstrated by the CdSe/CdS core/shell model system using its shell-thickness-dependent optical spectra as the probes with CdO and elemental S as the precursors. For this reaction system, a relatively high temperature, about 220-240 degrees C, was found to be essential for SILAR to fully occur. The synthesis can be readily performed on a multigram scale. The size distribution of the core/shell nanocrystals was maintained even after five monolayers of CdS shell (equivalent to about 10 times volume increase for a 3.5 nm CdSe nanocrystal) were grown onto the core nanocrystals. The epitaxial growth of the core/shell structures was verified by optical spectroscopy, TEM, XRD, and XPS. The photoluminescence quantum yield (PL QY) of the as-prepared CdSe/CdS core/shell nanocrystals ranged from 20% to 40%, and the PL full-width at half-maximum (fwhm) was maintained between 23 and 26 nm, even for those nanocrystals for which the UV-vis and PL peaks red-shifted by about 50 nm from that of the core nanocrystals. Several types of brightening phenomena were observed, some of which can further boost the PL QY of the core/shell nanocrystals. The CdSe/CdS core/shell nanocrystals were found to be superior in comparison to the highly luminescent CdSe plain core nanocrystals. The SILAR technique reported here can also be used for the growth of complex colloidal semiconductor nanostructures, such as quantum shells and colloidal quantum wells.  相似文献   

4.
用L-半胱氨酸(L-cysteine)作为稳定剂,以制备的CdTe量子点为核模板,水相合成了具有近红外发光的Ⅱ型核壳CdTe/CdSe半导体量子点。实验考察了合成温度,核模板的尺寸和组分比等因素对合成高质量的CdTe/CdSe量子点的影响。用紫外-可见吸收和荧光光谱研究了合成的量子点的光学性质。在优化的合成条件下,荧光发射光谱在586~753nm范围连续可调,荧光量子产率高达68%;通过X-射线衍射(XRD),X射线光电子能谱(XPS)和透射电镜(TEM)对合成的Ⅱ型核壳CdTe/CdSe量子点进行了结构和形貌表征。  相似文献   

5.
Chemically reduced bovine serum albumin (BSA) has been used to modify the surface of water-soluble CdTe quantum dots (QDs). It is demonstrated that the denatured BSA (dBSA) can be conjugated to the surface of CdTe QDs and thereby efficiently improve the chemical stability and the photoluminescence quantum yield (PL QY) of the QDs. It is inferred that a shell-like complex structure CdTe(x)(dBSA)(1-x) will form on the surface of the CdTe "core", resulting in the enhancement of PL intensity and the blue shift of the PL peak. This study of the effects of pH and dBSA concentration on optical properties of dBSA-coated QDs suggests that, at pH 6-9, the solution of dBSA-coated CdTe QDs can keep substantial stability and fluorescent brightness, whereas further increase of pH value leads to a dramatic decrease in PL QY and chemical stability. On the other hand, too high or too low initial dBSA concentration in the QD solution results in a decrease of PL QY for dBSA-coated CdTe QDs. This study provides a new approach of preparing stable water-soluble QDs with high PL QY and controllable luminescent colors for biological labeling applications.  相似文献   

6.
This paper describes the synthesis of core-shell CdSe/CdS quantum dots (QDs) in aqueous solution by a simple photoassisted method. CdSe was prepared from cadmium nitrate and 1,1-dimethylselenourea precursors under illumination for up to 3 h using a pulsed Nd:YAG laser at 532 nm. The effects that the temperature and the laser irradiation process have on the synthesis of CdSe were monitored by a series of experiments using the precursors at a Cd:Se concentration ratio of 4. Upon increasing the temperature (80-140 degrees C), the size of the CdSe QDs increases and the time required for reaching a maximum photoluminescence (PL) is shortened. Although the as-prepared CdSe QDs possess greater quantum yields (up to 0.072%) compared to those obtained by microwave heating (0.016%), they still fluoresce only weakly. After passivation of CdSe (prepared at 80 degrees C) by CdS using thioacetamide as the S source (Se:S concentration ratio of 1) at 80 degrees C for 24 h, the quantum yield of the core-shell CdSe/CdS QDs at 603 nm is 2.4%. Under UV irradiation of CdSe/CdS for 24 h using a 100-W Hg-Xe lamp, the maximum quantum yield of the stable QDs is 60% at 589 nm. A small bandwidth (W1/2 < 35 nm) indicates the narrow size distribution of the as-prepared core-shell CdSe/CdS QDs. This simple photoassisted method also allows the preparation of differently sized (3.7-6.3-nm diameters) core-shell CdSe/CdS QDs that emit in a wide range (from green to red) when excited at 480 nm.  相似文献   

7.
以3-巯基丙酸(MPA)为稳定剂,采用水相合成法制备了从绿色到近红外发射的CdTe量子点。系统研究了反应液pH值、镉和碲的物质的量之比及镉和3-巯基丙酸的物质的量之比等实验条件对CdTe量子点体系的发射波长和荧光量子产率的影响。在pH值为10.5,且nCd2+∶nTe2-∶nMPA=1∶0.05∶1.1的条件下,回流0.5 h,CdTe量子点体系在569 nm波长处的荧光量子产率达到30.8%;在7 h的回流时间内,制备的量子点的波长覆盖范围为525~730 nm。分别用X射线粉末衍射、透射电镜和红外光谱对CdTe量子点的晶体结构、形貌及表面基团进行表征。  相似文献   

8.
丛日敏  罗运军  靳玉娟 《化学学报》2007,65(21):2479-2483
为了研究温度对聚酰胺-胺(PAMAM)树形分子的模板法制备硫化镉(CdS)量子点的影响, 以4.5代(G4.5, 64个甲酯端基)PAMAM树形分子为模板, 在-10~30 ℃的温度范围内制备了分散良好的CdS量子点. 用透射电子显微镜(TEM)表征了CdS量子点的形貌、尺寸; 用紫外-可见光谱(UV-Vis)和光致发光光谱(PL)表征了CdS量子点的光学性能. 发现在相同条件下, 制备温度从-10 ℃升高到30 ℃, CdS量子点粒径从1.8 nm增大到3.4 nm, 其中在10 ℃时制备的量子点的尺寸分布最窄; CdS量子点的吸收和发射光谱均随温度增大而红移, 其中10 ℃时制备的量子点的室温光致发光效率最高. 这表明制备温度决定了树形分子的配位基团与Cd2+的分离速度, 并影响了CdS量子点的成核和生长过程, 从而最终决定了CdS量子点的尺寸及尺寸分布、光致发光颜色和发光效率.  相似文献   

9.
A sub‐monolayer CdS shell on PbS quantum dots (QDs) enhances triplet energy transfer (TET) by suppressing competitive charge transfer from QDs to molecules. The CdS shell increases the linear photon upconversion quantum yield (QY) from 3.5 % for PbS QDs to 5.0 % for PbS/CdS QDs when functionalized with a tetracene acceptor, 5‐CT . While transient absorption spectroscopy reveals that both PbS and PbS/CdS QDs show the formation of the 5‐CT triplet (with rates of 5.91±0.60 ns−1 and 1.03±0.09 ns−1 respectively), ultrafast hole transfer occurs only from PbS QDs to 5‐CT . Although the CdS shell decreases the TET rate, it enhances TET efficiency from 60.3±6.1 % to 71.8±6.2 % by suppressing hole transfer. Furthermore, the CdS shell prolongs the lifetime of the 5‐CT triplet and thus enhances TET from 5‐CT to the rubrene emitter, further bolstering the upconverison QY.  相似文献   

10.
Highly luminescent water-soluble CdTe quantum dots(QDs) have been synthesized with an electrogenerated precursor.The obtained CdTe QDs can possess good crystallizability,high quantum yield(QY) and favorable stability.Furthermore,a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.  相似文献   

11.
以油酸为配体,十八烯为溶剂,采用一步法合成了CdS量子点,研究了反应温度、反应时间和Cd/S的摩尔比对量子点光谱性能的影响.X射线衍射(XRD)和高分辨透射电镜(HRTEM)测试结果表明,所获得的CdS量子点为立方闪锌矿结构,且尺寸分布均一,结晶度高,其较强的带边发光、尖锐的紫外吸收峰以及狭窄的荧光发射峰进一步表明量子...  相似文献   

12.
A novel chemiluminescence (CL) performance of CdTe/CdS/ZnS quantum dots (QDs) with periodate (KIO4) was studied. Effects of concentration and pH on the CL system were investigated. Electron spin resonance (ESR) and the effects of radical scavenger analysis were employed for identification of intermediate species. The CL spectra for this system showed only one maximum emission peak centered around 620 nm, which was similar with photoluminescence (PL) spectra of CdTe/CdS/ZnS QDs. The CL of CdTe/CdS/ZnS QDs was induced by direct chemical oxidation and the possible mechanism could be explained by radiative recombination of injected holes and electrons. This investigation not only provided new sight into the optical characteristics of CdTe/CdS/ZnS QDs, but also broadened their potential optical utilizations.  相似文献   

13.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点,量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm),且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂,成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质,而且胶束原有的灵敏的热响应性被保留。这些研究初步表明,无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

14.
采用非热注法成功制备了高质量的油溶性CuInS2/ZnS核壳量子点, 量子点的荧光发射峰在可见光到近红外范围内可调(550~800 nm), 且荧光量子产率最高达80%。本文进一步利用具有温敏特性的聚丙烯酰胺胶束作相转移剂, 成功地将油溶性的CuInS2/ZnS核壳量子点转移入水相。水相中自组装形成的CuInS2/ZnS量子点-胶束复合物不仅具有良好的荧光性质, 而且胶束原有的灵敏的热响应性被保留。这些研究初步表明, 无镉的低毒的CuInS2/ZnS量子点可作为纳米胶束的荧光示踪探针。  相似文献   

15.
A simple and convenient method has been developed for synthesis of water‐soluble CdTe quantum dots (QDs) under ambient atmospheric conditions. In contrast to the traditional aqueous synthesis, green to red emitting CdTe QDs were prepared by using TeO2 to replace Te or Al2Te3 as tellurium source in this method. The influences of experimental variables, including pH value, 3‐mercaptopropionic acid (MPA)/Cd and Te/Cd molar ratios, on the emission peak and photoluminescence (PL) quantum yield (QY) of the obtained CdTe QDs have been systematically investigated. Experimental results indicate that green to red emitting CdTe QDs with a maximum photoluminescence quantum yield of 35.4% can be prepared at pH 11.3 and n(Cd):n(Te):n(MPA)=1:0.1:1.7.  相似文献   

16.
CdS semiconductor nanocrystals were grown as quantum dots (QDs) inside a silica matrix obtained by the sol-gelmethod and assisted in the mother liquid by high powerultrasounds. Small-angle neutron scattering (SANS) accountsfor a 3.6 nm crystal size homogeneously distributed. Optical excitation from the third harmonic of a Nd:YAG ns laser wasfocused on the sample to study the photoluminescence (PL) atroom temperature. The PL spectrum shows radiative processfrom intrinsic transitions and a broad band corresponding tothe traps. Variable stripe length (VSL) method was used to measure the optical gain spectra by the growth of theamplified luminescence. A broad optical gain spectrumproduced by the biexciton-exciton transitions revealing thestimulated emission from the CdS QDs. It is also observed ared-shift of the PL emission crystal size-dependent.  相似文献   

17.
This paper describes the synthesis of CdTe quantum dots (QDs) together capped by glutathione and thioglycolic acid (GSH and TGA) in aqueous solution. The narrow photoluminescence (fwhm ≤ 40 nm) CdTe QDs, whose emission spans most of the visible spectrum from green through red, has a quantum yield (QY) of 68% at room temperature. GSH/TGA-CdTe QDs are characterized by various experimental techniques such as optical absorption, photoluminescence and AFM measurements. Coumaric acid and caffeic acid is able to quench the fluorescence of GSH/TGA-CdTe QDs, and the fluorescence intensity is linearly proportional to the concentration of quenchers. The addition of bovine serum albumin (BSA) restores the fluorescence intensity of GSH/TGA-CdTe QDs-coumaric acid system and GSH/TGA-CdTe QDs-caffeic acid system. The fluorescence recovery was due to the interaction of BSA with coumaric acid and caffeic acid, leading to the freeing of the GSH/TGA-CdTe QDs. The fluorescence quenching mechanism of GSH/TGA-CdTe QDs was discussed. The binding constant and thermodynamics parameters of BSA-coumaric acid and BSA-caffeic acid during the binding process were calculated in the paper.  相似文献   

18.
A study on hydrothermal synthesis of CdTe quantum dots, highly luminescent nanocrystals at a relatively lower temperature, via changing the concentration of the CdTe precursors, is described. The full width at half maximum ranged from 40 to 80 nm and quantum yield (QY) was detected to be 27.4% at room temperature. The as-prepared CdTe QDs were labeled with BSA for fluorescence probes without pretreatment. Conjunction experimental results suggested that the as-prepared CdTe QDs are suitable for the application of biotechnology.  相似文献   

19.
A modified method to prepare high-quality thiol-capped CdTe nanocrystals (NCs) was reported in this paper. The experimental results showed that the different molar ratios of the ligands (thioglycolic acid) to monomers (Cd2+ ions) in the precursor solution played an important role in the photoluminescence (PL) quantum yield (QY) of the as-prepared CdTe NCs. When [ligand]/[monomer] = 1.2, the maximum fluorescent emission peak appeared in the orange-red window, and the PL QY increased up to 50% at room temperature without any postpreparative treatment. In the meantime, suitable reaction conditions were in favor of the optimization of the surface structure of NCs, resulting in the relatively high PL QY from green to red. In addition, some differences between hydrothermal synthesis and traditional aqueous synthesis of CdTe NCs were discussed.  相似文献   

20.
Surface plasmon-quantum dot coupling from arrays of nanoholes   总被引:2,自引:0,他引:2  
The coupling of semiconductor quantum dots (QDs) to the surface plasmon (SP) modes of nanohole arrays in a metal film was demonstrated for the first time, showing enhancement in the spontaneous emission by 2 orders of magnitude. The SP-enhanced transmission resonances of the nanohole arrays were tuned around the photoluminescence (PL) peak of polystyrene-b-poly(acrylic acid) (PS-b-PAA)-stabilized cadmium sulfide (CdS) quantum dots (QDs) in contact with the arrays. As a result the overall PL from the SP-QD system was enhanced by 2 orders of magnitude, even after excluding the enhanced transmission of the nanohole array without the QDs. The maximum enhancement occurred when the resonance from the nanohole array matched the QD PL spectrum. Time-resolved PL measurements were used to estimate the relative contribution of different physical mechanisms to the enhanced spontaneous emission. The increased spontaneous emission in the SP-QD system is promising for prospective plasmonic light-emitting devices incorporating QDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号