首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Synthesis and Crystal Structure of the Spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 The reaction of (i-Pr)2P(S)N(SiMe3)2 ( 1 ) with SnCl4 in 2:1 ratio yields under elimination of ClSiMe3 the four-membered spirocycle [(i-Pr)2P(S)NSiMe3]2SnCl2 ( 2 ). The molecular structure of 2 was investigated by an X-ray structure analysis. Compound 2 crystallises in the monoclinic space group P21, Z = 2, a = 938.1(1), b = 1 424.1(2), c = 1 207.2(1) pm, β = 110.59(1)°, R = 2.05% for 4 102 reflexions. Compound 2 is a spirocycle with two Sn? N? P? S-rings joined at tin. The two rings are in cis-position.  相似文献   

2.
3.
New Phosphido-bridged Multinuclear Complexes of Ag and Zn. The Crystal Structures of [Ag3(PPh2)3(PnBu2tBu)3], [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2, PnPr3), [Ag4(PPh2)4(PEt3)4]n, [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2, PnBu3, PEt2Ph), [Zn4(PhPSiMe3)4Cl4(C4H8O)2] and [Zn4(PtBu2)4Cl4] AgCl reacts with Ph2PSiMe3 in the presence of tertiary Phosphines (PnBu2tBu, PMenPr2, PnPr3 and PEt3) to form the multinuclear complexes [Ag3(PPh2)3(PnBu2tBu)3] 1 , [Ag4(PPh2)4(PR3)4] (PR3 = PMenPr2 2 , PnPr3 3 ) and [Ag4(PPh2)4(PEt3)4]n 4 . In analogy to that ZnCl2 reacts with Ph2PSiMe3 and PRR′2 to form the multinuclear complexes [Zn4(PPh2)4Cl4(PRR′2)2] (PRR′2 = PMenPr2 5 , PnBu3 6 , PEt2Ph 7 ). Further it was possible to obtain the compounds [Zn4(PhPSiMe3)4Cl4(C4H8O)2] 8 and [Zn4(PtBu2)4Cl4] 9 by reaction of ZnCl2 with PhP(SiMe3)2 and tBu2PSiMe3, respectively. The structures were characterized by X-ray single crystal structure analysis. Crystallographic data see “Inhaltsübersicht”.  相似文献   

4.
Peripheral Bonding of Mercury(II) Iodide to Trinuclear Molybdenum-Sulfur-Dithiophosphinato Clusters: [Mo3S4(R2PS2)4HgI2] (R = Et, Pr) Reaction of Mo3S4(R2PS2)4 1 (a : R = Et, b : R = Pr) with HgI2 in THF yields the diamagnetic title complexes [Mo3S4(R2PS2)4HgI2] 3 . The crystal structure of [ 3a (H2O)] · 2 CH2Cl2 shows the complexes to consist of a triangular array of Mo atoms which are bridged by μ2? S atoms and capped by a μ3? S atom. Each of the Mo atoms is chelated by a dithiophosphinato ligand Et2PS2? and in addition two Mo atoms are bridged by a Et2PS2? ligand while the H2O molecule is bonded weakly to the third Mo atom. Thus, all Mo atoms reveal a distorted octahedral coordination sphere. HgI2 is ?peripherally”? bonded to the cluster via two S atoms, one of which belongs to a chelating ligand and the other one to the bridging ligand. Space group P1 , lattice constants a = 12.157(2), b = 15.284(3), c = 16.049(3) Å, α = 115.56(1), β = 107.35(1), and γ = 94.62(1)°; Z = 2, dcalc = 2.23 mg/mm3; 4 236 observed reflections, R = 0.068. In organic solvents complexes 3 are strong electrolytes. VT-31P NMR data suggest a stepwise dissociation of 3 with formation of [Mo3S4(R2PS2)3] +[(R2PS2)HgI2]? and elimination of the bridging ligand from the cluster.  相似文献   

5.
Synthesis and Crystal Structure of a μ-Methylene-μ-hydrido-dialanate [R2Al(μ-CH2)(μ-H)AlR2]? (R = CH(SiMe3)2) tert-Butyl lithium reacts with the recently synthesized methylene bridged dialuminium compound [(Me3Si)2CH]2Al? CH2? Al[CH(SiMe3)2]2 2 in the presence of TMEDA under β-elimination; the thereby formed hydride anion is bound in a chelating manner by both unsaturated aluminium atoms forming a 3c–2e–Al? H? Al bond. The crystal structure of the product shows two independent molecules differing only slightly in bond lengths and angles, but significantly in conformation. While one of the Al2CH heterocycles deviates little from planarity with a rough C2 symmetry for the whole anion, the other one is folded with an angle of 21.1° and the arrangement of the substituents is best described by Cs symmetry.  相似文献   

6.
7.
Two new transition metal(II) complexes [M(hdpa)2(N(CN)2)2] (M = Mn ( 1 ), Co ( 2 ); hdpa = 2, 2'‐dipyridylamine) have been prepared and characterized structurally and magnetically. Both compounds crystallize in the monoclinic space group C2/c. 1 and 2 are isotypic with the unit cell parameters a = 8.634(9), b = 13.541(14), c = 21.99(2) Å, β = 94.806(18)°, and V = 2562(5) Å3 for 1 , a = 8.617(3) Å, b = 13.629(5)Å, c = 21.598(8)Å, β = 94.593(6)°, and V = 2528.4(15)Å3 for 2 , and Z = 4 for both. According to X‐ray crystallographic studies, each metal(II) ion was six‐coordinated with four nitrogen atoms from two bidentate hdpa ligand and two nitrogen atoms from two N(CN) anions to form slightly distorted octahedrons. Adjacent complex molecules are connected by hydrogen bonds or π···π interactions to form three‐dimensional network. The IR and UV spectroscopy were measured and the magnetic behaviors were investigated.  相似文献   

8.
The Phosphinophosphinidene-phosphoranes tBu2P? P = P(R)tBu2 from Li(THF)22-(tBu2P)2P] and Alkyl Halides We report the formation of tBu2P? P = P(R)tBu2 a and (tBu2)2PR b (with R = Me, Et, nPr, iPr, nBu, PhCH2, H2C = CH? CH2 and CF3) reactions of Li(THF)22-(tBu2P)2P] 2 with MeCl, MeI, EtCl, EtBr, nPrCl, nPrBr, iPrCl, nBuBr, PhCH2Cl, H2C = CH? CH2Cl or CF3Br. In THF solutions the ylidic compounds a predominate, whereas in pentane the corresponding triphosphanes b are preferrably formed. With ClCH2? CH = CH2 only b is produced; CF3Br however yields both tBu2P? P = P(Br)tBu2 and tBu2P? P = P(CF3)tBu2, but no b . The ratio of a:b is influenced by the reaction temperature, too. The compounds tBu2P? P = P(Et)tBu2 4a and (tBu2P)2PEt 4 b , e. g., are produced in a ratio of 4:3 at ?70°C in THF, and 1:1 at 20°C; whereas 1:1 is obtained at ?70°C in pentane, and 1:2 at 20°C. Neither tBuCl nor H2C = CHCl react with 2 . The compounds a decompose thermally or under UV irradiation forming tBu2PR and the cyclophosphanes (tBu2P)nPn.  相似文献   

9.
10.
11.
12.
Formation and Reaction of the Phosphanylidene-phosphorane (tBu)2P? P = PX(tBu)2 (X = Br, Cl) The formation of (tBu)2P? P = P(Br)tBu2 1 from [(tBu)2P]2PLi and BrH2C? CH2Br begins with an exchange of Li against Br and is then determined by the migration of Br from the secondary P atom in [(tBu)2P]2PBr 6 to the primary P in 1 . Similarly, (tBu)2P? P = PC1(tBu)2 2 is obtained starting from PCl3 and LiP(tBu)2. The formation of Phospanylidene—phosporane is not influenced by the choice o the halogene substituent, but the presence of the tBu groups is strongly required. (tBu)2P? P(Li)? P(SiMe3)2 e. g., yields (tBu)2P? P(br)? P(SiMe3)2 with BrH2C? CH2Br; however neither this nor (tBu)2P? P(Cl)? P(SiMe3)2 do rearrange to a Phosphanylidene-phosphorane. The F3C substituent could be neglected in this investigation as [(F3C)2P]2P? SiMe3 cannot be lithiated by means of BuLi. Compounds 1 and 2 display a charateristic temperature dependent behavior. While 1 at +20°C decomposes via the reactive intermediate (tBu)2P? P to from the cyclophosphanes P3[P(tBu)2]4, it gives crystals of [(tBu)2P]2P? p[P(tBu)2]2 at ?20°C (from a solution in toluene). Reacting 1 with tBuLi produces (tBu)2P? P = P(H)tBu2 20 and (tBu)2P? P(H)? P(tBu)2 14 . Initially, a transmetallation yield tBuBr and (tBu)2 P? P=Pli(tBu)2 21 ,then LiBr and isobutene are eliminated and 20 is formed which can rearrange to produce 14 . Without the elimination of isobutene, 1 react with nBuLi to give 21 witch can be trapped with Me3SiCl as (tBu)2P? P(tBu)2 23 . The main product in in this reaction is however [(tBu)2P]2P? nBu 22 .  相似文献   

13.
利用俄歇电子能谱(AES)和程序升温脱附谱(TDS)研究了NO2在Ag/Pt(110)双金属表面的吸附和分解.室温下NO2 在Ag/Pt(110)双金属表面发生解离吸附, 生成NO(ads)和O(ads)表面吸附物种. 在升温过程中NO(ads)物种发生脱附或者进一步分解. 500 K时NO2在Ag/Pt(110)双金属表面发生解离吸附生成O(ads)表面吸附物种. Pt 向Ag传递电子, 从而削弱Pt-O键的强度, 降低O(ads)从Pt 表面的并合脱附温度. 发现能够形成具有稳定组成的Ag/Pt(110)合金结构, 其表现出与Pt(110)-(1×2)相似的解离吸附NO2能力, 但与O(ads)的结合明显弱于Pt(110)-(1×2). 该AgPt(110)合金结构是可能的低温催化直接分解氮氧化物活性结构.  相似文献   

14.
Formation of NH4[Hg3(NH)2](NO3)3 and Transformation to [Hg2N](NO3) NH4[Hg3(NH)2](NO3)3 ( 1 ) and [Hg2N](NO3) ( 2 ) are obtained from conc. aqueous ammonia solutions of Hg(NO3)2 at ambient temperature and under hydrothermal conditions at 180 °C, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg3(NH)2](NO3)3: cubic, P4132, a = 1030.4(2) pm, Z = 4, Rall = 0.028; [Hg2N](NO3): tetra gonal, P43212, a = 1540.4(1), c = 909.8(1) pm, Z = 4, Rall = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 °C in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 °C forming yellow HgO. Most certainly, 1 is identical with a mineral previously analyzed as “Hg(NH2)(NO3)” with the same Hg:N:O ratio.  相似文献   

15.
The Crystal Structure of Tetrakis(di-tert.-butylphosphino)diphosphane [(tBu)2P]2P? P[P(tBu)2]2 [(tBu)2P]2P? P[P(tBu)2]2 1 obtained at ?20°C from a solution of (tBu)2P? P=P(Br)tBu2 forms yellow crystals (regular hexagons). 1 crystallizes monoclinic in the space group C2/c with a = 2145.6pm, b = 1137pm, c = 1696.1pm, β = 110.075° and Z = 4 formula units in the elementary cell. Due to high steric load the bond angles at the tertiary P atoms with δ = 115.7° are significantly larger than those at the primary P atoms with δ = 108.6°.  相似文献   

16.
17.
通过溶剂热和溶胶-凝胶涂层法, 设计并制备了具有分级多孔结构和光催化性质的核-壳纳米球(HP-Fe2O3@TiO2). 透射电子显微镜(TEM)照片证明所得HP-Fe2O3@TiO2样品具备分级多孔结构, 这是因为HP-Fe2O3@TiO2的内核-Fe2O3具有大孔空隙, 同时外壳-TiO2具有介孔空隙. 此外, 通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)以及氮气吸附-脱附曲线深入研究了HP-Fe2O3@TiO2的结构及其性质. 分别在可见及紫外光照下, 研究了样品在H2O2体系下的光催化降解亚甲基蓝(MB)的性质. 所观察到的HP-Fe2O3@TiO2纳米球的光催化性能, 可归因于核-壳结构的协同作用, 这进一步表明, TiO2外壳对α-Fe2O3的光催化活性有重要影响作用. 在可见光照射下, HP-Fe2O3@TiO2 (1 mL Ti(OC4H9)4 (TBT))具有较优异的光催化活性. 同时, HP-Fe2O3@TiO2 (4mL TBT)具备优异的单分散形貌, 并在紫外光照射下, 表现出最优的光催化活性.  相似文献   

18.
A method for efficient and extensive H/D exchange of substituted benzene derivatives which is catalyzed by heterogeneous Pd/C in D(2)O as a deuterium source under hydrogen atmosphere is described. Multi-deuterium incorporation into unactivated linear or branched alkyl chains that bear a carboxyl, hydroxyl, ether, ester, or amide moiety and are connected with a benzene ring was achieved by using the Pd/C-H(2)-D(2)O system. The present method does not require expensive deuterium gas or any special equipment.  相似文献   

19.
Synthesis and Structure of Phosphinophosphinidene-phosphoranes tBu2P? P?P(Me)tBu2 1, tBu(Me3Si)P? P?P(Me)tBu2 2, and tBu2P? P?P(Br)tBu2 3 A new method for the synthesis of 1 and 2 (Formulae see ?Inhaltsübersicht”?) is reported based on the reaction of 5 with substitution reagents (Me2SO4 or CH3Cl). The results of the X-ray structure determination of 1 and 2 are given and compared with those of 3 . While in 3 one P? P distance corresponds to a double bond and the other P? P distance to a single bond (difference 12.5 pm) the differences of the P? P distances in 1 and 2 are much smaller: 5.28 pm in 1 , 4.68 pm in 2 . Both 1 and 2 crystallize monoclinic in the space group P21/n (Z = 4). 2 additionally contains two disordered molecules of the solvent pentane in the unit cell. Parameters of 1 : a = 884.32(8) pm, b = 1 924.67(25) pm, c = 1 277.07(13) pm, β = 100.816(8)°, and of 2 : a = 1 101.93(12) pm, b = 1 712.46(18) pm, c = 1 395.81(12) pm, β = 111.159(7)°, all data collected at 143 K. The skeleton of the three P atoms is bent (PPP angle 100.95° for 1 , 100.29° for 2 and 105.77° for 3 ). Ab initio SCF calculations are used to discuss the bonding situation in the molecular skeleton of the three P atoms of 1 and 3 . The results show a significant contribution of the ionic structure R2P? P(?)? P(+)(X)R2. The structure with (partially) charged P atoms is stabilized by bulky polarizable groups R (as tBu) as compared to the fully covalent structure R2P? P(X)? PR2.  相似文献   

20.
王家盛  韩树民  李媛  沈娜  张伟 《物理化学学报》2015,30(12):2323-2327
为了降低MgH2的吸放氢温度, 提高其吸放氢动力学性能, 本文通过球磨方法制备了MgH2+20%(w)MgTiO3复合储氢材料, 并研究了其储氢性能. X射线衍射(XRD)结果表明, MgTiO3在与MgH2球磨过程中生成Mg2TiO4和TiO2, 并且Mg2TiO4和TiO2在体系的吸放氢过程中保持稳定, 能够对MgH2的吸放氢过程产生催化作用. 程序升温脱附和吸/放氢动力学测试结果表明, 添加MgTiO3后MgH2的初始放氢温度从389 ℃降至249 ℃.150 ℃下的吸氢量从0.977%(w)提高到2.902%(w), 350 ℃下的放氢量从2.319%(w)提高到3.653%(w). 同时, MgH2放氢反应的活化能从116 kJ·mol-1降至95.7 kJ·mol-1. 与MgH2相比, MgH2+20%(w) MgTiO3复合材料的热力学与动力学性能均有显著提高, 这主要是由于球磨和放氢过程中原位生成的TiO2和Mg2TiO4具有良好的催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号