共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of organometallic chemistry》2005,690(24-25):6089-6095
A series of cationic Rh(I) carbonyl complexes of the form [Rh(CO)(L)]PF6 (where L = 2,6-bis (alkylimidazol-2-ylidene)-pyridine; alkyl = Me (1a), Et (1b), CH2Ph (1c)) have been prepared by the reactions of [Rh(CO)2(OAc)]2 with diimidazolium pyridine salts in the presence of NEt3. The ν(CO) values for 1 are ca. 1982 cm−1, indicating that the N-heterocyclic carbene ligands impart high electron density on the Rh(I) centres, despite the overall cationic charge. Each of the Rh(I) complexes reacts with MeI to form two isomeric Rh(III) methyl species, and a third unidentified species. Kinetic measurements on the MeI oxidative addition reactions give second-order rate constants (MeCN, 25 °C) of 0.0927, 0.0633 and 0.0277 M−1 s−1 for 1a, 1b and 1c, respectively. Comparison of these data with those for related Rh(I) carbonyl complexes shows that 1 have remarkably high nucleophilicity for cationic species. 相似文献
2.
The PH bond of dialkylphosphites (dimethylphosphite, 5,5-dimethyl-1,3-dioxa-2-phosphorinane and 4,4,5,5-tetramethyl-1,3-dioxa-2-phospholane) oxidatively adds to irClL2(L = PPh3, AsPh3) and IrCl(PMe2Ph)3 generated in situ to give six-coordinate hydrido(dialkylphosphonato)iridium(III) complexes, e.g. IrHClL2[{(MeO)2-PO}2H] and IrHCl(PMe2Ph)3[PO(OMe)2]. Addition of triphenylphosphine to a solution containing [IrCl(C8H14)2]2 and dimethylphosphite in a 1:2 mol ratio gives a five-coordinate hydrido (dimethylphosphonato)iridium(III) complex IrHCl(PPh3)2{PO(OMe)2}, from which six-coordinate pyridine and acetylacetonato complexes IrHCl(PPh3)2(C5H5N){PO(OMe)2} and IrH(PPh3)2(acac){PO(OMe)2} can be obtained. The ligand arrangements in the various complexes are inferred from IR, 1H and 31P NMR data. 相似文献
3.
Malacea R Daran JC Duckett SB Dunne JP Godard C Manoury E Poli R Whitwood AC 《Dalton transactions (Cambridge, England : 2003)》2006,(27):3350-3359
Ir(CO)[CpFe{eta5-C5H3(PPh2)CH2SR}]Cl [R = Ph and (t)Bu], containing a kappa2:P,S ligand, undergoes H2 addition across the S-Ir-CO axis under kinetic control to form two distinct diastereoisomeric products, which then rearrange via S dissociation in a process that can be hijacked for useful catalysis, but ultimately form a single diastereoisomer of the thermodynamic product where the hydride ligands are trans to chloride and phosphine. 相似文献
4.
Jochanan Blum Moshe Weitzberg Roland J. Mureinik 《Journal of organometallic chemistry》1976,122(2):261-264
Oxidative addition of aryl halides, ArX, to chlorocarbonylbis(triphenylphos-phine)iridium(I) yields iridium(III) aryl complexes, IrCl(X)(Ar)(CO)(PPh3)2. The reactivity of the aryl halide decreases in the order I > Br > C1, and electron-withdrawing substituents in the aryl ring accelerate the reaction. The IrIII compounds may be utilised as arylating agents. 相似文献
5.
Two novel, neutral, octanuclear copper(I) complexes displaying twisted-boat Cu(8) conformations and short Cu-Cu interactions have been synthesized from hydrothermal reactions; the complexes show unusual multiple band emissions. 相似文献
6.
7.
The reaction of benzoyl chloride with [Rh(dppp)2]Cl at 190°C and with [Rh(dppp)Cl]1 or 2 at 25°C where dppp 1,3-bis(diphenylphosphino)propane has been examined. In both cases the five coordinate compound RhCl2(COPh)-(dppp) was rapidly formed and isolated in high yield. This compound does not undergo phenyl migration to RhCl2(CO)(Ph)(dppp) even upon warming to 190°C in benzoyl chloride solution and no decarbonylation products are observed. This is in marked contrast to the reaction of RhCl(PPh3)3 with benzoyl chloride where the migrated product RhCl2(CO)(Ph)(PPh3)2 is formed with the eventual reductive elimination of chlorobenzene. The single crystal X-ray analysis of RhCl2(COPh)(dppp) has been carried out (R 0.036). The compound is square pyramidal with the COPh group in the apical position. The Rh—C bond distance of 1.992(3) Å is short for a RhIII—Cσ bond and indicates dπ → π★ back bonding. 相似文献
8.
Gideon J. van Zyl Gert J. Lamprecht Johann G. Leipoldt 《Transition Metal Chemistry》1990,15(2):170-175
Summary The kinetics of the oxidative addition of Hg(CN)2 to [Rh(-diketone)(P(OPh)3)2] in acetone medium were studied. Various -diketones, with different electronic and steric properties, were used to determine their effect on the rate of the oxidative addition reactions. The structure of the product of the oxidative addition was proposed with the aid of i.r.,1H–,13C– and31P n.m.r. spectra. A product in whichcis addition took place with the CN– and one P(OPh)3 group in the axial positions of an octahedron were proposed. A second order rate law, electronic and steric factors influencing the reaction rate as well as large negative values for the entropy of activation, supported an associative type of mechanism, which probably proceedsvia a cyclic three-centred transition state. 相似文献
9.
Ho DG Ismail R Franco N Gao R Leverich EP Tsyba I Ho NN Bau R Selke M 《Chemical communications (Cambridge, England)》2002,(6):570-571
Singlet oxygen reacts with Ir(I) and Rh(I) thiolato complexes to form the corresponding Ir(III) and Rh(III) peroxo thiolato complexes which do not undergo intramolecular oxidation of the thiolate moiety. 相似文献
10.
Abbasi A Skripkin MY Eriksson L Torapava N 《Dalton transactions (Cambridge, England : 2003)》2011,40(5):1111-1118
The two dimethyl sulfoxide solvated rhodium(III) compounds, [Rh(dmso-κO)(5)(dmso-κS)](CF(3)SO(3))(3) (1 & 1* at 298 K and 100 K, respectively) and [Rh(dmso-κO)(3)(dmso-κS)(2)Cl](CF(3)SO(3))(2) (2), crystallize with orthorhombic unit cells in the space group Pna2(1) (No. 33), Z = 4. In the [Rh(dmso)(6)](3+) complex with slightly distorted octahedral coordination geometry, the Rh-O bond distance is significantly longer with O trans to S, 2.143(6) ? (1) and 2.100(6) ? (1*), than the mean Rh-O bond distance with O trans to O, 2.019 ? (1) and 2.043 ? (1*). In the [RhCl(dmso)(5)](3+) complex, the mean Rh-O bond distance with O trans to S, 2.083 ?, is slightly longer than that for O trans to Cl, 2.067(4) ?, which is consistent with the trans influence DMSO-κS > Cl > DMSO-κO of the opposite ligands. Raman and IR absorption spectra were recorded and analyzed and a complete assignment of the vibrational bands was achieved with support by force field calculations. An increase in the Rh-O stretching vibrational frequency corresponded to a decreasing trans-influence from the opposite ligand. The Rh-O force constants obtained were correlated with the Rh-O bond lengths, also including previously obtained values for other M(dmso)(6)(3+) complexes with trivalent metal ions. An almost linear correlation was obtained for the MO stretching force constants vs. the reciprocal square of the MO bond lengths. The results show that the metal ion-oxygen bonding of dimethyl sulfoxide ligands is electrostatically dominated in those complexes and that the stretching force constants provide a useful measure of the relative trans-influence of the opposite ligands in hexa-coordinated Rh(III)-complexes. 相似文献
11.
Dimeric chlorobridge complex [Rh(CO)2Cl]2 reacts with two equivalents of a series of unsymmetrical phosphine–phosphine monoselenide ligands, Ph2P(CH2)nP(Se)Ph2 {n = 1( a ), 2( b ), 3( c ), 4( d )}to form chelate complex [Rh(CO)Cl(P∩Se)] ( 1a ) {P∩Se = η2‐(P,Se) coordinated} and non‐chelate complexes [Rh(CO)2Cl(P~Se)] ( 1b–d ) {P~Se = η1‐(P) coordinated}. The complexes 1 undergo oxidative addition reactions with different electrophiles such as CH3I, C2H5I, C6H5CH2Cl and I2 to produce Rh(III) complexes of the type [Rh(COR)ClX(P∩Se)] {where R = ? C2H5 ( 2a ), X = I; R = ? CH2C6H5 ( 3a ), X = Cl}, [Rh(CO)ClI2(P∩Se)] ( 4a ), [Rh(CO)(COCH3)ClI(P~Se)] ( 5b–d ), [Rh(CO)(COH5)ClI‐(P~Se)] ( 6b–d ), [Rh(CO)(COCH2C6H5)Cl2(P~Se)] ( 7b–d ) and [Rh(CO)ClI2(P~Se)] ( 8b–d ). The kinetic study of the oxidative addition (OA) reactions of the complexes 1 with CH3I and C2H5I reveals a single stage kinetics. The rate of OA of the complexes varies with the length of the ligand backbone and follows the order 1a > 1b > 1c > 1d . The CH3I reacts with the different complexes at a rate 10–100 times faster than the C2H5I. The catalytic activity of complexes 1b–d for carbonylation of methanol is evaluated and a higher turnover number (TON) is obtained compared with that of the well‐known commercial species [Rh(CO)2I2]?. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
12.
Dimethylphosphite, (CH3O)2P(O)H, adds oxidatively to iridium(I) and rhodium(I) complexes to give hydrido-iridium(III) or -rhodium(III) dimethylphosphonate complexes. A complex Ir(H)Cl[P(O)(OCH3)2][P(OH)(OCH3)2]3 obtained from [IrCl(C8H14)2]2 and dimethylphosphite catalyses the stereo-selective reduction of 4-t-butylcyclohexanone to cis/trans-4-t-butylcyclohexanol, the ratio being identical with that obtained using the Henbest catalyst iridium(IV) chloride, phosphorous acid or one of its esters, and aqueous isopropanol. 相似文献
13.
V. R. Flid O. S. Manulik L. M. Grundel' A. P. Belov 《Theoretical and Experimental Chemistry》1991,26(4):465-467
Nickel(I) compounds whose concentration was 10–4–10–6 of the total concentration of nickel added to the system were identified by EPR in the reaction of 2,5-norbornadiene with nickel homoligand allyl complexes Niall2 (all is C3H5, 1-CH3C3H4, or 2-CH3C3H4). The Ni(I) complexes were stable at room temperature under oxygen-free conditions. It was shown that the paramagnetic complexes were in equilibrium with diamagnetic forms. The temperature dependence of the concentration of the paramagnetic species was determined. The structure of the paramagnetic nickel(I) complexes and the possible routes of their formation are discussed on the basis of the obtained data.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 26, No. 4, pp. 490–493, July–August, 1990. 相似文献
14.
To reveal the denaturation mechanism of lysozyme by dimethyl sulfoxide (DMSO), thermal stability of lysozyme and its preferential
solvation by DMSO in binary solutions of water and DMSO was studied by differential scanning calorimetry (DSC) and using densities
of ternary solutions of water (1), DMSO (2) and lysozyme (3) at 298.15 K. A significant endothermic peak was observed in binary
solutions of water and DMSO except for a solution with a mole fraction of DMSO (x
2) of 0.4. As x
2 was increased, the thermal denaturation temperature T
m decreased, but significant increases in changes in enthalpy and heat capacity for denaturation, ΔH
cal and ΔC
p, were observed at low x
2 before decreasing. The obtained amount of preferential solvation of lysozyme by DMSO (∂g
2/∂g
3) was about 0.09 g g−1 at low x
2, indicating that DMSO molecules preferentially solvate lysozyme at low x
2. In solutions with high x
2, the amount of preferential solvation (∂g
2/∂g
3) decreased to negative values when lysozyme was denatured. These results indicated that DMSO molecules do not interact directly
with lysozyme as denaturants such as guanidine hydrochloride and urea do. The DMSO molecules interact indirectly with lysozyme
leading to denaturation, probably due to a strong interaction between water and DMSO molecules. 相似文献
15.
Katsuhiko Kawakami Yasuhiko Ozaki Toshio Tanaka 《Journal of organometallic chemistry》1974,69(1):151-159
Reaction of carbon diselenide in 3 to 1 molar ratio, and areneselenols in equimolar ratio, with trans-IrCl(CO)(PPPh3)2 and PtL4, gives oxidative addition products, IrCl(CO)CSe2)(PPh3)2, Pt(CSe2)L2, IrHCl(CO)(SeC6H4Me-p)(PPh3)2, and PtH(SeR)L2, respectively (R = Ph and p-MeC6H4; L = PPh3 and PPh2Me). However, reactions of PtL4 with an excess of areneselenols afford bis(arylselenide) complexes Pt(SeR)2L2. The configurations of these complexes are discussed on the basis of their IR and PMR spectra. The carbon diselenide adducts are suggested to have configurations similar to the corresponding carbon disulfide adducts. The platinum hydrides are found to exist as a mixture of cis and trans isomers in solution, both the isomers being labile with regard to dissociative exchange of the tertiary phosphine ligands. The trans configurations of Pt(SeR)2(PPh2Me)2 are unambiguously shown by the virtually coupled triplet pattern of the PPh2Me signals. 相似文献
16.
N. N. Kuranova A. S. Gushchina K. V. Grazhdan S. V. Dushina V. A. Sharnin 《Russian Journal of Inorganic Chemistry》2016,61(12):1616-1619
The stability constants of copper(II) complexes with nicotinate ion in water–ethanol and water–dimethyl sulfoxide mixtures are determined potentiometrically at 25.0 ± 0.1°C at ionic strength of 0.25 (NaClO4). The stability of the copper(II) nicotinate complex significantly increases with ethanol content in the solution, thus making it possible to control the biologically important process by varying the solvent composition. The increase in DMSO concentration causes a less noticeable rise in stability, with its maximum observed at 0.1 dimethyl sulfoxide mole fractions. A comparative analysis of the findings and stability constants of Cu2+ complexes with pyridine-type ligands is carried out. The results are discussed using the solvation thermodynamics approach. 相似文献
17.
The use of a combination of IrCl3 with a series of ligands derived from the C2-symmetric diamine diphenylethanediamine (DPEN) forms a catalyst capable of the asymmetric hydrogenation of ketones in up to 85% ee. 相似文献
18.
Rob van Asselt Kees Vrieze Cornelis J. Elsevier 《Journal of organometallic chemistry》1994,480(1-2):27-40
Zerovalent complexes of the type Pd(Ar-BIAN)(alkene), i.e. complexes containing the rigid bidentate nitrogen ligands bis(arylimino) acenaphthene (Ar = p-Tol, p-MeOC6H4, o-Tol,o,o′-Me2C6H3, o,o′-iPr2C6H3) and an electron-poor alkene have been shown to react with a variety of (organic) halides RX, including methyl, benzyl, aryl, acyl and allylic halides, to give the corresponding square planar divalent Pd(R)X(Ar-BIAN) or [Pd(η3-allyl)(Ar-BIAN)]X complexes. The new complexes obtained have been fully characterized and their fluxional behaviour in solution studied by 1H NMR spectroscopy. The rate of oxidative addition of iodomethane to Pd(p-Tol-BIAN)(alkene) complexes was found to decrease with increasing Pd-alkene bond strength, i.e. dimethyl fumarate fumaronitrile, but oxidative addition to the fumaronitrile complex was accelerated by irradiation with a mercury lamp. Oxidative addition of allylic ha 相似文献
19.
The major complex formed in solution from [[Pd0(dba)2]+1P-N] mixtures is [Pd0(dba)(P-N)] (dba=trans,trans-dibenzylideneacetone; P-N=PhPN, 1-dimethylamino-2-diphenylphosphinobenzene; FcPN, N,N-dimethyl-1-[2-(diphenylphosphino)ferrocenyl]methylamine; OxaPN, 4,4'-dimethyl-2-(2-diphenylphosphinophenyl)-1,3-oxazoline). Each complex consists of a mixture of isomers involved in equilibria: two 16-electron rotamer complexes [Pd0(eta2-dba)(eta2-P-N)] and one 14-electron complex [Pd0(eta2-dba)(eta1-P-N)] observed for FcPN and OxaPN. [Pd0(dba)(PhPN)] and [SPd0(PhPN)] (S solvent) react with PhI in an oxidative addition: [SPd0(PhPN)] is intrinsically more reactive than [Pd0(dba)(PhPN)]. This behavior is similar to that of the bidentate bis-phosphane ligands. When the PhPN ligand is present in excess, it behaves as a monodentate phosphane ligand, since [Pd0(eta2-dba)(eta1-PhPN)2] is formed first by preferential cleavage of the Pd-N bond instead of the Pd olefin bond. [Pd0(eta1-PhPN)3] is also eventually formed. [Pd0(dba)(FcPN)] and [Pd0(dba)(OxaPN)] are formed whatever the excess of ligand used. [SPd0(FcPN)] and [SPd0)(OxaPN)] are not involved in the oxidative addition. The 16-electron complexes [Pd0(eta2-dba)(eta2-FcPN)] and [Pd0(eta2-dba)(eta2-OxaPN)] are found to react with PhI via a 14-electron complex as has been established for [Pd0(eta2-dba)(eta1-OxaPN)]. Once again, the cleavage of the Pd-N bond is favored over that of Pd-olefin bond. This work demonstrates the higher affinity for [Pd0(P-N)] of dba compared with the P-N ligand, and emphasizes once more the important role of dba, which either controls the concentration of the most reactive complex, [SPd0(PhPN)], or is present in the reactive complexes, [Pd0(dba)(FcPN)] or [Pd0(dba)(OxaPN)], and thus contributes to their intrinsic reactivity. 相似文献
20.
《Journal of organometallic chemistry》2001,634(1):25-33
Four multitopic ligands, N,N′-bis[(S)-prolyl)phenylenediamine, N,N′-bis{[(S)-pyrrolidin-2-yl]methyl}phenylenediamine, N,N′-bis[(S)-N-benzylprolyl]phenylenediamine, N,N′-bis{[(S)-N-benzyl-pyrrolidin-2-yl]methyl}phenylenediamine, were synthesised and their co-ordination properties with Rh(I) and Ir(I) studied. The complexes were prepared by the reaction of [MCl(cod)]2 with AgPF6 and further treatment with the ligand. All ligands form one to one [ML] species with the above metal ions. The structures of these complexes were elucidated by analytical and spectroscopic data (elemental analysis, mass spectroscopy, IR, 1H- and 13C-NMR). Complexes show excellent activities and enantioselectivities up to 30% for the hydrogenation of prochiral olefins under mild reaction conditions. 相似文献