首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical model for the radiation linewidth in a multi-fluxon state of a long Josephson junction is presented. Starting from the perturbed sine-Gordon model with the temperature dependent noise term, we use a collective coordinate approach in order to calculate the finite radiation linewidth due to the internal degrees of freedom in the moving fluxon chain. At low fluxon density, the radiation linewidth is expected to be substantially larger than that of a lumped Josephson oscillator. With increasing the fluxon density, a crossover to a much smaller linewidth approaching the lumped oscillator limit is predicted.  相似文献   

2.
Voltage tunable oscillators operating at millimeter and submillimeter wavelengths can be designed and fabricated using series arrays of Josephson junctions. The coherent radiation obtained from such oscillators results from the mutual phase-locking of the junction through the high-frequency Josephson current generated in the array. A 40-junction array of Josephson junctions distributed over many wavelengths has been designed, fabricated and tested for operation at 100 GHz. This paper presents the experimental results obtained for this prototype array. A review of the theory for optimizing array design is presented along the implications for power generation at submillimeter wavelengths in future arrays.  相似文献   

3.
《Physics letters. A》1986,116(2):71-72
The linewidth of the radiation from the Josephson ring oscillator under the influence of an external field is predicted by a new perturbation analysis which is an imporvement of an earlier kink model. The linewidth is due to background oscillations rather than kink velocity fluctuations.  相似文献   

4.
A system for measuring the absolute frequency of a far-infrared (FIR) laser is described. Josephson point contacts have been utilized in the system as a frequency harmonic mixer connecting microwaves and optically pumped CH3OH laser lines. The Josephson point contacts are capable of generating beat signals of 90 GHz microwaves and FIR waves of up to 4.25 THz. To measure the frequency of the beat signals from the Josephson junction with a frequency counter, tracking oscillators have been developed, which tracks the beat signals by phase locking and regenerate clean signals for frequency counting. It is shown that the absolute frequency can be measured to an accuracy of about 100 Hz by using the tracking oscillators.  相似文献   

5.
We report the circuit simulations and experiments of millimeter-wave radiation from a high temperature superconducting(HTS) bicrystal Josephson junction(BJJ) array. To study the effects of junction characteristic parameters on radiation properties, new radiation circuit models are proposed in this paper. The series resistively and capacitively shunted junction(RCSJ) models are packaged into a Josephson junction array(JJA) model in the simulation. The current-voltage characteristics(IVCs) curve and radiation peaks are simulated and analyzed by circuit models, which are also observed from the experiment at liquid nitrogen temperature. The experimental radiation linewidth and power are in good agreement with simulated results. The presented circuit models clearly demonstrate that the inconsistency of the JJA will cause a broad linewidth and a low detected power. The junction radiation properties are also investigated at the optimal situation by circuit simulation. The results further confirm that the consistent JJA characteristic parameters can successfully narrow the radiation linewidth and increase the power of junction radiation.  相似文献   

6.
We describe a transition from fully synchronous periodic oscillations to partially synchronous quasiperiodic dynamics in ensembles of identical oscillators with all-to-all coupling that nonlinearly depends on the generalized order parameters. We present an analytically solvable model that predicts a regime where the mean field does not entrain individual oscillators, but has a frequency incommensurate to theirs. The self-organized onset of quasiperiodicity is illustrated with Landau-Stuart oscillators and a Josephson junction array with a nonlinear coupling.  相似文献   

7.
8.
We have studied dynamics of Josephson vortices in strongly coupled long Josephson junctions stack, such as an intrinsic Josephson junction, by numerical simulations based on coupled sine–Gordon equations considering a periodic pinning potential. In this report, we investigate flux-flow oscillators induced two types of pinning potentials. One is magnetic periodic pinning potential, the other is periodic bias currents. Our results demonstrate that the periodic pinning potential can develop the generated power of flux-flow oscillator in certain condition.  相似文献   

9.
We propose a new interferometric method of measuring the homogeneous emission linewidth for an ensemble of radiating oscillators.  相似文献   

10.
The interaction between soliton and sinusoidal wave in two weakly coupled long Josephson junctions is studied. Theoretical analysis reveals that the soliton may be embedded in Melnikov chaotic attractors and the Fiske-step-modes are implied in the boundedness condition of the system. Comparison between the chaotic soliton oscillators and synchronized soliton oscillators shows that the former possesses greater maximal velocity and energy.  相似文献   

11.
We observe a subharmonic gap structure (SGS) and the Josephson effect in superconducting scanning tunneling microscope junctions with resistances below 100 kΩ. The magnitude of the n=2 SGS is shown to scale with the square of the junction normal state conductance, in agreement with theory. We show by analyzing the Josephson effect in these junctions that the superconducting phase dynamics are strongly affected by thermal fluctuations. We estimate the linewidth of the Josephson oscillations due to phase fluctuations, a quantity that may be important in modern theories of the subgap structure. While phase fluctuations may smear the SGS current onsets, we conclude that the sharpness of these onsets in our data is not limited by fluctuations.  相似文献   

12.
13.
A technique is presented for narrowing the spectral linewidth of microwave signals generated photonically by heterodyning a pair of vertical-cavity surface-emitting lasers forming an extended optically coupled cavity. The experimentally demonstrated linewidth reduction, by as much as a factor of 10(4)--to less than 10 kHz in microwave frequencies up to a couple of gigahertz--is approximately ten times that expected with conventional line-narrowing techniques such as optical feedback. An interpretation is given in terms of mode locking in pairs of optically coupled lasers as a first demonstration in the frequency domain of lag synchronization of coupled oscillators. The results of theoretical modeling agree well with the experimental results.  相似文献   

14.
The formation of vibronic spectra of free polyatomic molecules is studied by taking the concept of sequences as constituent elements of vibronic bands. Statistical properties of the thermal reservoir of oscillators, which randomly perturbs optically active transitions in a polyatomic molecule, are considered. The spectral shape, position, and width of the elementary sequential lines (ESL) are determined. It is shown that the ESLs have a Lorentzian shape if the perturbations are short-term and the pulse shape is symmetric about its origin. The position of the ESLs depends on the total vibrational energy of the thermal reservoir of oscillators in the initial electronic state of a molecule. The analysis of the statistical properties of the thermal reservoir of polyatomic molecules shows that one should distinguish between the ESL linewidth of individual molecules and the ESL linewidth averaged over the entire thermal ensemble. It is shown that individual molecules of the thermal ensemble that have different total vibrational energies are characterized by different widths of the ESLs. Consequently, the exchange and redistribution dynamics of the vibrational energy stored in the initial electronic state should manifest itself in the difference between the single-molecule ESL widths measured at different instants in time.  相似文献   

15.
The electrical behavior of anisotropic BSCCO single crystals is modeled by mutually coupled long Josephson junctions. We show that although the fluxons in the different layers do not a priori prefer the in-phase motion desired for many potential applications it is possible to induce such behavior by coupling the system to a high-Q resonator with a resonance frequency corresponding to fluxon in-phase motion. The resulting model is a set of coupled non-linear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined stacked long Josephson junctions and cavity system can be understood on the basis of the general concepts of nonlinear oscillators interacting with a resonator. For some region of the parameter space it is possible to reach the desired synchronous state, making the system potentially suitable for applications. We also look at the different dynamical states defined by different fluxon dynamical states in combination with different cavity properties.  相似文献   

16.
《Comptes Rendus Physique》2012,13(5):470-479
We review the use of mechanical oscillators in circuit quantum electrodynamics. The capacitive coupling of nano-electromechanical systems with quantum bits and superconducting microwave resonators gives rise to a rich quantum physics involving electrons, photons and phonons. We focus in particular on the linear coupling between a mechanical oscillator and a microwave resonator and present the quantum dynamics that stems from the phonotonic Josephson junction. The microwave cavity turns out to be a powerful device to detect quantum phonon states and manipulate entangled states between phonons and photons.  相似文献   

17.
The results of the development of sub-mm Superconducting Integrated Receiver (SIR) for monitoring of the Earth’s atmosphere from high-altitude balloons are presented. The microchip of the superconducting integrated receiver comprising local oscillator based on the long Josephson junction (flux flow oscillator, FFO) is developed and successfully tested. The receiver noise temperature as low as 200 K is measured at a frequency of 650 GHz. The possibility to phase-lock FFO to the reference oscillator, which is vitally important for spectrometer operation, is demonstrated. To ensure the possibility of remote tuning of a phase-locked (PL) SIR onboard a balloon, a number of approaches for the PL SIR automatic computer control are developed and tested. New modifications of the superconducting local oscillator (FFO) are developed, fabricated and tested. The FFO design is optimized for the integrated spectrometer. The FFO linewidth is studied at frequencies of up to 700 GHz using a specially developed technique. A free-running linewidth between 9 and 2 MHz is measured in the frequency range from 500 to 700 GHz. As a result, the spectral ratio of the phased-locked FFO ranges from 35 to 90%. The effect of FFO linewidth imperfections on the retrieval procedure of the atmosphere gas spectra is studied.  相似文献   

18.
A quality factor exceeding 5x10(9) is obtained in whispering-gallery mode (WGM) resonators fabricated of crystalline quartz. We observe significant electrical tunability of WGMs in x-cut resonators and demonstrate an electro-optic modulator with a submegahertz passband at 12 GHz. We discuss other photonics applications of the crystal quartz WGM resonators in narrowband agile tunable filters, compact narrow linewidth lasers, and microwave and millimeter wave oscillators.  相似文献   

19.
Physical principles, new ways and means of creation, schemes, characteristics and features of efficient high-power tunable pulse Raman lasers, operating in the near and middle ir are reviewed. The paper includes: tunable dye and Nd lasers as pump sources; promising active media and their optimal excitation methods; optical systems for producing spatially homogeneous pumping; the physics of Raman oscillators and their practical schemes, efficient high pulse energy liquid N2 and compressed H2 Raman oscillators, covering several bands in the range between 1.4 and 9.2 μm; the physics and construction of efficient tunable Raman amplifiers-convertors, amplifying in the saturation regime of spontaneously scattered or beforehand produced and collimated external Stokes signals, obtained in the spectral range between 0.83 μm and 18 μm. Raman laser using a, so-called, broadband pump where the linewidth of pumping light is broader than the spontaneous scattering linewidth, are also discussed. Features of both amplification and oscillation regimes of such broadband pumped Raman lasers are reported, and conditions for the efficient frequency conversion are determined.  相似文献   

20.
We measure the state dynamics of a tunable anharmonic quantum system, the Josephson phase circuit, under the excitation of a frequency-chirped drive. At small anharmonicity, the state evolves like a wave packet-a characteristic response in classical oscillators; in this regime, we report exponentially enhanced lifetimes of highly excited states, held by the drive. At large anharmonicity, we observe sharp steps, corresponding to the excitation of discrete energy levels. The continuous transition between the two regimes is mapped by measuring the threshold of these two effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号