首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The route to chaos for moderate Prandtl number gravity driven convection in porous media is analysed by using Adomian's decomposition method which provides an accurate analytical solution in terms of infinite power series. The practical need to evaluate numerical values from the infinite power series, the consequent series truncation, and the practical procedure to accomplish this task, transform the otherwise analytical results into a computational solution achieved up to a desired but finite accuracy. The solution shows a transition to chaos via a period doubling sequence of bifurcations at a Rayleigh number value far beyond the critical value associated with the loss of stability of the convection steady solution. This result is extremely distinct from the sequence of events leading to chaos in low Prandtl number convection in porous media, where a sudden transition from steady convection to chaos associated with an homoclinic explosion occurs in the neighbourhood of the critical Rayleigh number (unless mentioned otherwise by 'the critical Rayleigh number' we mean the value associated with the loss of stability of the convection steady solution). In the present case of moderate Prandtl number convection the homoclinic explosion leads to a transition from steady convection to a period-2 periodic solution in the neighbourhood of the critical Rayleigh number. This occurs at a slightly sub-critical value of Rayleigh number via a transition associated with a period-1 limit cycle which seem to belong to the sub-critical Hopf bifurcation around the point where the convection steady solution looses its stability. The different regimes are analysed and periodic windows within the chaotic regime are identified. The significance of including a time derivative term in Darcy's equation when wave phenomena are being investigated becomes evident from the results.  相似文献   

2.
The routes to chaos in a fluid saturated porous layer heated from below are investigated by using the weak nonlinear theory as well as Adomian's decomposition method to solve a system of ordinary differential equations which result from a truncated Galerkin representation of the governing equations. This representation is equivalent to the familiar Lorenz equations with different coefficients which correspond to the porous media convection. While the weak nonlinear method of solution provides significant insight to the problem, to its solution and corresponding bifurcations and other transitions, it is limited because of its local domain of validity, which in the present case is in the neighbourhood of any one of the two steady state convective solutions. On the other hand, the Adomian's decomposition method provides an analytical solution to the problem in terms of infinite power series. The practical need to evaluate numerical values from the infinite power series, the consequent series truncation, and the practical procedure to accomplish this task transform the otherwise analytical results into a computational solution achieved up to a finite accuracy. The transition from the steady solution to chaos is analysed by using both methods and their results are compared, showing a very good agreement in the neighbourhood of the convective steady solutions. The analysis explains previously obtained computational results for low Prandtl number convection in porous media suggesting a transition from steady convection to chaos via a Hopf bifurcation, represented by a solitary limit cycle at a sub-critical value of Rayleigh number. A simple explanation of the well known experimental phenomenon of Hysteresis in the transition from steady convection to chaos and backwards from chaos to steady state is provided in terms of the present analysis results.  相似文献   

3.
《Fluid Dynamics Research》1991,7(3-4):181-200
Two-dimensional thermal convection in a fluid layer confined between two horizontal rigid walls kept at spatially periodic temperatures is investigated by direct numerical simulations. With increasing the Rayleigh number, convection evolves from a steady state to a temporally chaotic flow. It is observed that the transition to the chaos occurs via quasi-periodic states with two or three basic frequencies or via sequences of period-doubling bifurcations, according to the boundary temperature distributions.  相似文献   

4.
The effects of a magnetic field on the route to chaos in a fluid-saturated porous layer were investigated based on the approach of dynamical systems. A low dimensional Lorenz-like model was obtained using Galerkin truncated approximation. The presence of a magnetic field helped delay the convective motion. The transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.  相似文献   

5.
In this work we study the pattern of bifurcations and intermittent-chaos of non-Newtonian couple-stress shallow fluid layer subject to heating from below. The couple-stress parameter delays onset of convection, synchronizes chaotic behavior, and decreases the heat transfer . Some global aspects of the dynamics such as homoclinic bifurcations and transition to chaos are explored. The effects of particle size on the intermittent-chaos regime at particular normalized Rayleigh number, say \(r=166.1\), are investigated. With the increase in couple-stress parameter, the present Lorenz-like system synchronizes to a steady state via a series of periodic solutions interspersed with intervals of chaotic behaviors.  相似文献   

6.
A method of using feedback control to promote or suppress the transition to chaos in porous media convection is demonstrated in this article. A feedback control suggested by Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) is used in the present article to provide a comparison between an analytical expression for the transition point to chaos and numerical results. In addition, it is shown that such a feedback control can be applied as an excellent practical means for controlling (suppressing or promoting) chaos by using a transformation made by Magyari (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010). The latter shows that Mahmud and Hashim (Transp Porous Media, doi:10.1007/s11242-009-9511-1, 2010) model can be transformed into Vadasz-Olek’s model (Transp Porous Media 37(1):69–91, 1999a) through a simple transformation of variables implying that the main effect the feedback control has on the solution is equivalent to altering the initial conditions. The theoretical and practical significance of such an equivalent alteration of the initial conditions is presented and discussed.  相似文献   

7.
The Darcy Model with the Boussinesq approximation is used to study natural convection in a shallow porous layer, with variable permeability, filled with a binary fluid. The permeability of the medium is assumed to vary exponentially with the depth of the layer. The two horizontal walls of the cavity are subject to constant fluxes of heat and solute while the two vertical ones are impermeable and adiabatic. The governing parameters for the problem are the thermal Rayleigh number, R T, the Lewis number, Le, the buoyancy ratio, φ, the aspect ratio of the cavity, A, the normalized porosity, ε, the variable permeability constant, c, and parameter a defining double-diffusive convection (a = 0) or Soret induced convection (a = 1). For convection in an infinite layer, an analytical solution of the steady form of the governing equations is obtained on the basis of the parallel flow approximation. The onset of supercritical convection, or subcritical, convection are predicted by the present theory. A linear stability analysis of the parallel flow model is conducted and the critical Rayleigh number for the onset of Hopf’s bifurcation is predicted numerically. Numerical solutions of the full governing equations are found to be in excellent agreement with the analytical predictions.  相似文献   

8.
The analysis of natural convection for moderate and high Prandtl numbers in a fluid-saturated porous layer heated from below and subject to vibrations is presented with a twofold objective. First, it aims at investigating the significance of including a time derivative term in Darcy’s equation when wave phenomena are being considered. Second, it is dedicated to reporting results related to the route to chaos for moderate and high Prandtl number convection. The results present conclusive evidence indicating that the time derivative term in Darcy’s equation cannot be neglected when wave phenomena are being considered even when the coefficient to this term is extremely small. The results also show occasional chaotic “bursts” at specific values (or small range of values) of the scaled Rayleigh number, $R$ , exceeding some threshold. This behavior is quite distinct from the case without forced vibrations, when the chaotic solution occupies a wide range of $R$ values, interrupted only by periodic “bursts.” Periodic and chaotic solution alternate as the value of the scaled Rayleigh number varies.  相似文献   

9.
In this paper we investigate the combined free and forced convection of a fully developed Newtonian fluid within a vertical channel composed of porous media when viscous dissipation effects are taken into consideration. The flow is analysed in the region of a first critical Rayleigh number in order to interpret the multiple-valued solutions and discuss their validity. The governing fourth-order, ordinary differential equation, which contains the Darcy and the viscous dissipation terms, is solved analytically using perturbation techniques and numerically using D02HBF NAG Library. A detailed investigation of the governing O.D.E. is performed on both clear fluid and porous medium for various values of the viscous dissipation parameter, , when the wall temperature decreases linearly with height, and the pressure gradient is both above and below its hydrostatic value. Although mathematically the results in all cases show that there are two solution branches, producing four possible solutions, the study of the velocity and buoyancy profiles together with the Darcy effect indicate that only one of the two solutions at any value of the Rayleigh number appears to be physically acceptable. It is shown that the effect of the Darcy number decreases as the critical Rayleigh numbers increase.  相似文献   

10.
The equilibrium of a liquid heated from below is stable only for small values of the vertical temperature gradient. With increase of the temperature gradient a critical equilibrium situation occurs, as a result of which convection develops. If the liquid fills a closed cavity, then there is a discrete sequence of critical temperature gradients (Rayleigh numbers) for which the equilibrium loses stability with respect to small characteristic disturbances. This sequence of critical gradients and motions may be found from the solution of the linear problem of equilibrium stability relative to small disturbances. If the temperature gradient exceeds the lower critical value, then (for steady-state heating conditions) there is established in the liquid a steady convective motion of a definite amplitude which depends on the magnitude of the temperature gradient. Naturally, the amplitude of the steady convective motion cannot be determined from linear stability theory; to find this amplitude we must solve the problem of convection with heating from below in the nonlinear formulation. A nonlinear study of the steady motion of a liquid in a closed cavity with heating from below was made in [1]. In that study it was shown that for Rayleigh numbers R which are less than the lower critical value Rc steady-state motions of the liquid are not possible. With R>Rc a steady convection arises, whose amplitude near the threshold is small and proportional to (R–Rc)1/2 (the so-called soft instability)-this is in complete agreement with the results of the phenom-enological theory of Landau [2, 3].Primarily, various versions of the method of expansion in powers of the amplitude [4–8] have been used, and, consequently, the results obtained in those studies are valid only for values of R which are close to Rc, i. e., near the convection threshold.It is apparent that the study of developed convective motion far from the threshold can be carried out only numerically, with the use of digital computers. In [9, 10] the numerical methods have been successfully used for the study of developed convection in an infinite plane horizontal liquid layer.The present paper undertakes the numerical study of plane convective motions of a liquid in a closed cavity of square section. The complete nonlinear system of convection equations is solved by the method of finite differences on a digital computer for various values of the Rayleigh number, the maximal value exceeding by a factor of 40 the minimal critical value Rc. The numerical solution permits following the development of the steady motion which arises with R>Rc in the course of increase of the Rayleigh number and permits study of the oscillatory motions which occur at some value of the parameter R. The heat transfer through the cavity is studied. The corresponding linear problem on equilibrium stability is solved approximately by the Galerkin method.  相似文献   

11.
Nonlinear steady cellular convection in a fluid-saturated porous medium is investigated using the technique of spectral analysis. The effect of permeability is shown to contract the cell and to damp the convection process. The influence of Prandtl number, though small, is seen only in the fourth order term. The cross-interactions of the higher modes caused by nonlinear effects are considered through the modal Rayleigh number R . The possibility of the existence of a steady solution with two self-excited modes in certain regions is predicted. A detailed discussion of the heat transport is made. The theoretical value of the Nusselt number is found to be in good agreement with the experimental results. The similarities and qualitative differences between the present analysis and that of the power integral technique are brought out.  相似文献   

12.
康建宏  谭文长 《力学学报》2018,50(6):1436-1457
基于修正的Darcy模型, 介绍了多孔介质内黏弹性流体热对流稳定性研究的现状和主要进展. 通过线性稳定性理论, 分析计算多孔介质几何形状(水平多孔介质层、多孔圆柱以及多孔方腔)、热边界条件(底部等温加热、底部等热流加热、底部对流换热以及顶部自由开口边界)、黏弹性流体的流动模型(Darcy-Jeffrey, Darcy-Brinkman-Oldroyd以及Darcy-Brinkman -Maxwell模型)、局部热非平衡效应以及旋转效应对黏弹性流体热对流失稳的临界Rayleigh数的影响. 利用弱非线性分析方法, 揭示失稳临界点附近热对流流动的分叉情况, 以及失稳临界点附近黏弹性流体换热Nusselt数的解析表达式. 采用数值模拟方法, 研究高Rayleigh数下黏弹性流体换热Nusselt数和流场的演化规律,分析各参数对黏弹性流体热对流失稳和对流换热速率的影响.主要结果:(1)流体的黏弹性能够促进振荡对流的发生;(2)旋转效应、流体与多孔介质间的传热能够抑制黏弹性流体的热对流失稳;(3)在临界Rayleigh数附近,静态对流分叉解是超临界稳定的, 而振荡对流分叉可能是超临界或者亚临界的,主要取决于流体的黏弹性参数、Prandtl数以及Darcy数;(4)随着Rayleigh数的增加,热对流的流场从单个涡胞逐渐演化为多个不规则单元涡胞, 最后发展为混沌状态.   相似文献   

13.
The problem of penetrative convection in a fluid saturated porous medium heated internally is analysed. The linear instability theory and nonlinear energy theory are derived and then tested using three dimensions simulation.Critical Rayleigh numbers are obtained numerically for the case of a uniform heat source in a layer with two fixed surfaces. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three dimensional simulation. Our results show that the linear threshold accurately predicts the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.  相似文献   

14.
A convection problem in anisotropic and inhomogeneous porous media has been analyzed. In particular, the effect of variable permeability, thermal diffusivity, and variable gravity with respect to the vertical direction, has been studied. A linear and nonlinear stability analysis of the conduction solution has been performed. The validity of both the linear instability and global nonlinear energy stability thresholds are tested using a three- dimensional simulation. Our results show that the linear threshold accurately predicts on the onset of instability in the basic steady state. However, the required time to arrive at the basic steady state increases significantly as the Rayleigh number tends to the linear threshold.  相似文献   

15.
In this work an analysis of steady free convection flow of water at 4℃ passing a vertical infinite porous plate in a rotating system is considered. Approximate solutions for the coupled nonlinear equations are obtained for the velocity and the temperature. The effect of E’ (Eckman number) is discussed, when P (prandtl number)=11.4, which corresponds to water at 4℃.  相似文献   

16.
Bradean  R.  Ingham  D. B.  Heggs  P. J.  Pop  I. 《Transport in Porous Media》1998,32(3):329-355
The mixed convection caused when a horizontal circular cylinder is suddenly heated is investigated in the situation when the initial flow past the cylinder is uniform and its direction either upwards or downwards. An analytical series solution, which is valid at small times, is obtained using the matched asymptotic expansions technique. A numerical solution, which is valid at all times and for any values of the Rayleigh and Péclet numbers, is also obtained using a fully implicit finite-difference method. Three different regimes, when either the free or forced convection is dominant or when they have the same order of magnitude, are considered. In the free convection dominated regime, two vortices develop near the sides of the cylinder in both situations of an upward or downward external flow. Comparisons between the analytical and numerical results at small times, as well as a detailed discussion of the evolution of the numerical solution are presented. The numerical results obtained for large Rayleigh, Ra, and Péclet Pe, numbers show that a thermal boundary-layer forms adjacent to the cylinder for any value of the ratio Ra/e. The steady state boundary-layer analysis, similar to that performed by Cheng and Merkin, is analysed in comparison to the numerical solution obtained for large values of Ra and Pe at very large times.  相似文献   

17.
多孔介质中热对流的分叉机理研究   总被引:3,自引:1,他引:3  
张涵信 《力学学报》1994,26(2):129-138
本文利用解析分析方法研究了数值模拟发现的多孔介质层中出现的对流分叉机理,指出控制方程中的Rayleigh数,是决定流动的特征参数。当Rayleigh数小于临界数值时,多孔介质内流动处于静止传热状态,并且这种状态是稳定的。如果Rayleigh数大于临界数值,非线性方程出现分叉解,文中指出,存在多个使平凡解失稳而分叉的临界Rayleigh数,当Rayleigh数由小到大经历这些临界数值时,其由平凡解发展起来的分叉解的流态,依次由单回流区转变为双回流区及三回流区。理论分析给出了分叉解和分叉解的振幅方程,阐明了分叉的机理,其结论和数值结果定性一致.  相似文献   

18.
The linear and nonlinear stability of double diffusive convection in a layer of couple stress fluid–saturated porous medium is theoretically investigated in this work. Applying the linear stability theory, the criterion for the onset of steady and oscillatory convection is obtained. Emphasizing the presence of couple stresses, it is shown that their effect is to delay the onset of convection and oscillatory convection always occurs at a lower value of the Rayleigh number at which steady convection sets in. The nonlinear stability analysis is carried out by constructing a system of nonlinear autonomous ordinary differential equations using a truncated representation of Fourier series method and also employing modified perturbation theory with the help of self-adjoint operator technique. The results obtained from these two methods are found to complement each other. Besides, heat and mass transport are calculated in terms of Nusselt numbers. In addition, the transient behavior of Nusselt numbers is analyzed by solving the nonlinear system of ordinary differential equations numerically using the Runge–Kutta–Gill method. Streamlines, isotherms, and isohalines are also displayed.  相似文献   

19.
Viscous dissipation effects in the problem of a fully-developed combined free and forced convection flow between two symmetrically and asymmetrically heated vertical parallel walls filled with a porous medium is analyzed. The equation of motion contains the modified Rayleigh number for a porous medium and the small-order viscous dissipation parameter. Particular attention is given to the solutions near the critical Rayleigh numbers at which infinite flow rates are predicted. Information concerning the multiplicity of solutions at critical Rayleigh numbers is also deduced from perturbation solutions of the governing equation.  相似文献   

20.
Both linear and weakly nonlinear stability analyses are performed to study thermal convection in a rotating couple-stress fluid-saturated rigid porous layer. In the case of linear stability analysis, conditions for the occurrence of possible bifurcations are obtained. It is shown that Hopf bifurcation is possible due to Coriolis force, and it occurs at a lower value of the Rayleigh number at which the simple bifurcation occurs. In contrast to the nonrotating case, it is found that the couple-stress parameter plays a dual role in deciding the stability characteristics of the system, depending on the strength of rotation. Nonlinear stability analysis is carried out by constructing a set of coupled nonlinear ordinary differential equations using truncated representation of Fourier series. Sub-critical finite amplitude steady motions occur depending on the choice of physical parameters but at higher rotation rates oscillatory convection is found to be the preferred mode of instability. Besides, the stability of steady bifurcating equilibrium solution is discussed using modified perturbation theory. Heat transfer is calculated in terms of Nusselt number. Also, the transient behavior of the Nusselt number is investigated by solving the nonlinear differential equations numerically using the Runge–Kutta–Gill method. It is noted that increase in the value of Taylor number and the couple-stress parameter is to dampen the oscillations of Nusselt number and thereby to decrease the heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号