首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We apply, for first time, the recently developed proton transfer reaction time‐of‐flight mass spectrometry (PTR‐TOF‐MS) apparatus as a rapid method for the monitoring of lactic acid fermentation (LAF) of milk. PTR‐TOF‐MS has been proposed as a very fast, highly sensitive and versatile technique but there have been no reports of its application to dynamic biochemical processes with relevance to the food industry. LAF is a biochemical‐physicochemical dynamic process particularly relevant for the dairy industry as it is an important step in the production of many dairy products. Further, LAF is important in the utilization of the by‐products of the cheese industry, such as whey wastewaters. We show that PTR‐TOF‐MS is a powerful method for the monitoring of major volatile organic chemicals (VOCs) formed or depleted during LAF, including acetaldehyde, diacetyl, acetoin and 2‐propanone, and it also provides information about the evolution of minor VOCs such as acetic acid, 2,3‐pentanedione, ethanol, and off‐flavor related VOCs such as dimethyl sulfide and furfural. This can be very important considering that the conventional measurement of pH decrease during LAF is often ineffective due to the reduced response of pH electrodes resulting from the formation of protein sediments. Solid‐phase microextraction gas chromatography/mass spectrometry (SPME‐GC/MS) data on the inoculated milk base and final fermented product are also presented to supporting peak identification. We demonstrate that PTR‐TOF‐MS can be used as a rapid, efficient and non‐invasive method for the monitoring of LAF from headspace, supplying important data about the quality of the final product and that it may be used to monitor the efficacy of manufacturing practices. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Direct‐injection mass spectrometry (DIMS) techniques have evolved into powerful methods to analyse volatile organic compounds (VOCs) without the need of chromatographic separation. Combined to chemometrics, they have been used in many domains to solve sample categorization issues based on volatilome determination. In this paper, different DIMS methods that have largely outperformed conventional electronic noses (e‐noses) in classification tasks are briefly reviewed, with an emphasis on food‐related applications. A particular attention is paid to proton transfer reaction mass spectrometry (PTR‐MS), and many results obtained using the powerful PTR‐time of flight‐MS (PTR‐ToF‐MS) instrument are reviewed. Data analysis and feature selection issues are also summarized and discussed. As a case study, a challenging problem of classification of dark chocolates that has been previously assessed by sensory evaluation in four distinct categories is presented. The VOC profiles of a set of 206 chocolate samples classified in the four sensory categories were analysed by PTR‐ToF‐MS. A supervised multivariate data analysis based on partial least squares regression‐discriminant analysis allowed the construction of a classification model that showed excellent prediction capability: 97% of a test set of 62 samples were correctly predicted in the sensory categories. Tentative identification of ions aided characterisation of chocolate classes. Variable selection using dedicated methods pinpointed some volatile compounds important for the discrimination of the chocolates. Among them, the CovSel method was used for the first time on PTR‐MS data resulting in a selection of 10 features that allowed a good prediction to be achieved. Finally, challenges and future needs in the field are discussed.  相似文献   

4.
The solvent‐enhanced headspace sorptive extraction technique aims at modifying PDMS polarity using a solvent to increase its concentration capability. In solvent‐enhanced headspace sorptive extraction, a PDMS tubing closed at both ends by small glass stoppers and filled with an organic solvent is suspended in the sample headspace for a fixed time. After sampling, the sampled analytes are recovered from the PDMS tubing by thermal desorption and online transferred to a GC–flame ionization detector or GC‐MS system for analysis. Cyclohexane, iso‐octane, ethyl acetate, acetone, acetonitrile and methanol were tested as PDMS modifiers to sample the volatile fractions of sage (Salvia lavandulifolia Vahl.), thyme (Thymus vulgaris L.) and roasted coffee. Ethyl acetate was found to be the most effective PDMS modifier for all matrices investigated; although to a lesser extent, cyclohexane also increased component recoveries with sage and thyme. Acetone, acetonitrile and methanol did not increase PDMS recovery, while isooctane was excluded because of its interaction with the polymer. The results show that solvent‐modified PDMS extends the range of sampled headspace components with different polarities, increases the recovery of many of them, improves sensitivity in trace analysis, speeds up recovery and gives repeatability comparable with that of unmodified PDMS.  相似文献   

5.
For the on‐line monitoring of flavour compound release, atmospheric pressure chemical ionization (APCI) and proton transfer reaction (PTR) combined to mass spectrometry (MS) are the most often used ionization technologies. APCI‐MS was questioned for the quantification of volatiles in complex mixtures, but direct comparisons of APCI and PTR techniques applied on the same samples remain scarce. The aim of this work was to compare the potentialities of both techniques for the study of in vitro and in vivo flavour release. Aroma release from flavoured aqueous solutions (in vitro measurements in Teflon bags and glass vials) or flavoured candies (in vivo measurements on six panellists) was studied using APCI‐ and PTR‐MS. Very similar results were obtained with both techniques. Their sensitivities, expressed as limit of detection of 2,5‐dimethylpyrazine, were found equivalent at 12 ng/l air. Analyses of Teflon bag headspace revealed a poor repeatability and important ionization competitions with both APCI‐ and PTR‐MS, particularly between an ester and a secondary alcohol. These phenomena were attributed to dependency on moisture content, gas/liquid volume ratio, proton affinities and product ion distribution, together with inherent drawbacks of Teflon bags (adsorption, condensation of water and polar molecules). Concerning the analyses of vial headspace and in vivo analyses, similar results were obtained with both techniques, revealing no competition phenomena. This study highlighted the equivalent performances of APCI‐MS and PTR‐MS for in vitro and in vivo flavour release investigations and provided useful data on the problematic use of sample bags for headspace analyses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this study was to develop a technique for performing automatic static headspace analysis of volatiles without a cryogenic device. Reconcentration of solutes was accomplished using a graphitized carbon coated precolumn between two splitting points and stopping carrier gas flow during injection. Chromatographic profiles of volatile compounds from ground coffee compared with split and splitless injections provide confirmation of the good sensitivity of the technique. The analysis of a standard mixture covering a wide range of volatility confirms that the described technique might be useful to achieve enrichement of low volatile headspace compounds, even if discrimination against the various components is present.  相似文献   

7.
Summary The profiles of sulfur containing compounds present in both Arabica and Robusta coffees were determined by concentrating the volatiles from dry ground roasted coffee headspace, pressed coffee oil or brewed coffee headspace onto an adsorbent (Tenax) which was then thermally desorbed into a capillary column. The volatiles were then chromatographed and detected with a flame photometric detector. Significant quantitative differences between the profiles of Arabica coffee and Robusta coffee are found for all three sample types with a few components being up to 20-times more concentrated in the Robusta coffee than in the Arabica coffee. These differences may be utilized to detect as little as 1 % Robusta coffee present in Arabica coffee.  相似文献   

8.
Coffee, one of the most popular beverages in the world, attracts consumers by its rich aroma and the stimulating effect of caffeine. Increasing consumers prefer decaffeinated coffee to regular coffee due to health concerns. There are some main decaffeination methods commonly used by commercial coffee producers for decades. However, a certain amount of the aroma precursors can be removed together with caffeine, which could cause a thin taste of decaffeinated coffee. To understand the difference between regular and decaffeinated coffee from the volatile composition point of view, headspace solid-phase microextraction two-dimensional gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS) was employed to examine the headspace volatiles of eight pairs of regular and decaffeinated coffees in this study. Using the key aroma-related volatiles, decaffeinated coffee was significantly separated from regular coffee by principal component analysis (PCA). Using feature-selection tools (univariate analysis: t-test and multivariate analysis: partial least squares-discriminant analysis (PLS-DA)), a group of pyrazines was observed to be significantly different between regular coffee and decaffeinated coffee. Pyrazines were more enriched in the regular coffee, which was due to the reduction of sucrose during the decaffeination process. The reduction of pyrazines led to a lack of nutty, roasted, chocolate, earthy, and musty aroma in the decaffeinated coffee. For the non-targeted analysis, the random forest (RF) classification algorithm was used to select the most important features that could enable a distinct classification between the two coffee types. In total, 20 discriminatory features were identified. The results suggested that pyrazine-derived compounds were a strong marker for the regular coffee group whereas furan-derived compounds were a strong marker for the decaffeinated coffee samples.  相似文献   

9.
The preparation of a fiber‐forming blend consisting of polypropylene and polyvinyl alcohol mixed with glycerol and with polypropylene grafted with maleic anhydride were studied. The physical and mechanical properties of blend fibers were also studied. The rheological measurements for semiquantitative evaluation of technological compatibility of the components and for processing the polymeric material in extruding and spinning process were carried out. The experimental results revealed the technological compatibility of the polypropylene‐polyvinyl alcohol blend in the presence of glycerol and polypropylene grafted with maleic anhydride. The colloidal structure of interface layer is assumed to be in a three‐ or four‐component system. The mixture of polyvinyl alcohol with glycerol allows for the preparation of well spun fiber‐forming polypropylene blends. Polypropylene‐polyvinyl alcohol blend fibers consisting of up to 20% polyvinyl alcohol with sufficient mechanical properties, higher porosity and significantly higher sorption of water than polypropylene fibers alone were prepared. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, the novel technique based on headspace single‐drop microextraction with in‐syringe derivatization followed by GC‐MS was established to determine the volatile organic acids in tobacco. The parameters for headspace single‐drop microextraction and in‐syringe derivatization were optimized, including extraction time, and volume of derivatization reagent and in‐syringe derivatization time. The method validations including linearity, precision, recovery and LOD were also studied. The obtained results illustrated that the optimized technique was easy, highly efficient and sensitive. Finally, the proposed method was successfully applied to the analyses of volatile organic acids in tobacco samples with seven different brands. It was further demonstrated that the present technique developed in this study does offer a simple and fast approach to determine volatile organic acids in tobacco.  相似文献   

11.
A family of conformational rheological models for multi‐component miscible polymer blends is developed using a modified form of the Poisson bracket formulation. Two conformation tensors called c 1 and c 2 are introduced to show the orientation of the first and the second components of a blend, respectively. The mobility tensor and the energy function for each blend component are expressed in terms of these conformation tensors. The interaction effects are also included by energy expressions. The predictions of this family of “volume‐preserving” models are illustrated for a Hookean‐type energy function and several expressions of the modified mobility tensors. The results are illustrated for material functions in transient (start‐up and relaxation) and steady shear flows. The predictions are compared with experimental data taken from the literature for a miscible polymer blend. Study of the model sensitivity to its parameter shows that model predictions can cover a wide range of rheological behavior generally observed for multi‐component miscible polymer blends in steady and transient shear flows.

Experimental data and model predictions for steady shear viscosity for HDPE/LDPE blends.  相似文献   


12.
Since 2004, a number of herbal blends containing different synthetic compounds mimicking the pharmacological activity of cannabinoids and displaying a high toxicological potential have appeared in the market. Their availability is mainly based on the so‐called “e‐commerce”, being sold as legal alternatives to cannabis and cannabis derivatives. Although highly selective, sensitive, accurate, and quantitative methods based on GC–MS and LC–MS are available, they lack simplicity, rapidity, versatility and throughput, which are required for product monitoring. In this context, matrix‐assisted laser desorption ionization‐time of flight mass spectrometry (MALDI‐TOF MS) offers a simple and rapid operation with high throughput. Thus, the aim of the present work was to develop a MALDI‐TOF MS method for the rapid qualitative direct analysis of herbal blend preparations for synthetic cannabinoids to be used as front screening of confiscated clandestine preparations. The sample preparation was limited to herbal blend leaves finely grinding in a mortar and loading onto the MALDI plate followed by addition of 2 µl of the matrix/surfactant mixture [α‐cyano‐4‐hydroxy‐cinnamic acid/cetyltrimethylammonium bromide (CTAB)]. After drying, the sample plate was introduced into the ion source for analysis. MALDI‐TOF conditions were as follows: mass spectra were analyzed in the range m/z 150–550 by averaging the data from 50 laser shots and using an accelerating voltage of 20 kV. The described method was successfully applied to the screening of 31 commercial herbal blends, previously analyzed by GC–MS. Among the samples analyzed, 21 contained synthetic cannabinoids (namely JWH‐018, JWH‐073, JWH‐081, JWH‐250, JWH‐210, JWH‐019, and AM‐694). All the results were in agreement with GC–MS, which was used as the reference technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A miscibility and phase behavior study was conducted on poly(ethylene glycol) (PEG)/poly(l ‐lactide‐ε‐caprolactone) (PLA‐co‐CL) blends. A single glass transition evolution was determined by differential scanning calorimetry initially suggesting a miscible system; however, the unusual Tg bias and subsequent morphological study conducted by polarized light optical microscopy (PLOM) and atomic force microscopy (AFM) evidenced a phase separated system for the whole range of blend compositions. PEG spherulites were found in all blends except for the PEG/PLA‐co‐CL 20/80 composition, with no interference of the comonomer in the melting point of PEG (Tm = 64 °C) and only a small one in crystallinity fraction (Xc = 80% vs. 70%). However, a clear continuous decrease in PEG spherulites growth rate (G) with increasing PLA‐co‐CL content was determined in the blends isothermally crystallized at 37 °C, G being 37 µm/min for the neat PEG and 12 µm/min for the 20 wt % PLA‐co‐CL blend. The kinetics interference in crystal growth rate of PEG suggests a diluting effect of the PLA‐co‐CL in the blends; further, PLOM and AFM provided unequivocal evidence of the interfering effect of PLA‐co‐CL on PEG crystal morphology, demonstrating imperfect crystallization in blends with interfibrillar location of the diluting amorphous component. Significantly, AFM images provided also evidence of amorphous phase separation between PEG and PLA‐co‐CL. A true Tg vs. composition diagram is proposed on the basis of the AFM analysis for phase separated PEG/PLA‐co‐CL blends revealing the existence of a second PLA‐co‐CL rich phase. According to the partial miscibility established by AFM analysis, PEG and PLA‐co‐CL rich phases, depending on blend composition, contain respectively an amount of the minority component leading to a system presenting, for every composition, two Tg's that are different of those of pure components. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 111–121  相似文献   

14.

Rationale

The rapid screening of volatile organic compounds (VOCs) by direct analysis has potential applications in the areas of food and flavour science. Currently, the technique of choice for VOC analysis is gas chromatography/mass spectrometry (GC/MS). However, the long chromatographic run times and elaborate sample preparation associated with this technique have led a movement towards direct analysis techniques, such as selected ion flow tube mass spectrometry (SIFT‐MS), proton transfer reaction mass spectrometry (PTR‐MS) and electronic noses. The work presented here describes the design and construction of a Venturi jet‐pump‐based modification for a compact mass spectrometer which enables the direct introduction of volatiles for qualitative and quantitative analysis.

Methods

Volatile organic compounds were extracted from the headspace of heated vials into the atmospheric pressure chemical ionization source of a quadrupole mass spectrometer using a Venturi pump. Samples were analysed directly with no prior sample preparation. Principal component analysis (PCA) was used to differentiate between different classes of samples.

Results

The interface is shown to be able to routinely detect problem analytes such as fatty acids and biogenic amines without the requirement of a derivatisation step, and is shown to be able to discriminate between four different varieties of cheese with good intra and inter‐day reproducibility using an unsupervised PCA model. Quantitative analysis is demonstrated using indole standards with limits of detection and quantification of 0.395 μg/mL and 1.316 μg/mL, respectively.

Conclusions

The described methodology can routinely detect highly reactive analytes such as volatile fatty acids and diamines without the need for a derivatisation step or lengthy chromatographic separations. The capability of the system was demonstrated by discriminating between different varieties of cheese and monitoring the spoilage of meats.  相似文献   

15.
Static headspace GC-MS method coupled with H/D exchange was firstly developed to determine and identifythe volatile components in the fresh root and rhizome of Curcuma wenyujin.The TIC chromatograms of 3 batchesof fresh roots harvested at different time showed significant difference in the volatile components:the constitutionwas the same but the content of them was different.More than 60 volatile components in fresh roots(Root of C.wenyujin)and rhizomes(Rhizome of C.wenyujin)of C.wenyujin were detected,of which 51 and 48 volatile com-ponents were identified respectively.The fresh roots and rhizomes of C.wenyujin were found to have the similarvolatile components.The contents of these components were calibrated by the response of β-elemene.In addition,the principal active component,β-elemene,was further confirmed and relatively quantified by its standard.γ-terpinene showed obvious allylic hydrogen/deuterium exchange using deuterium oxide which gave a new methodto identify some compounds containing allylic hydrogen.At the same time,the active hydrogen compounds werealso further confirmed.The results show that HS-GC-MS method is a fast,simple and efficient way for the analysisof volatile components from medical plants.  相似文献   

16.
The total saccharides content of Lycium barbarum L. is very high, and a high temperature would result in saccharide decomposition and the emergence of a large amount of water. Moreover, the volatile compounds from the fruit of L. barbarum L. are rather low in concentration. Hence, it is difficult for a conventional headspace method to study the volatile compounds from the fruit of L. barbarum L. Since headspace‐trap gas chromatography with mass spectrometry is an excellent method for trace analysis, a headspace‐trap gas chromatography with mass spectrometry method based on low‐temperature (30°C) enrichment and multiple headspace extraction was developed to explore the volatile compounds from the fruit of L. barbarum L. The headspace of the sample was extracted in 17 cycles at 30°C. Each time, the compounds extracted were concentrated in the trap (Tenax TA and Tenax GR, 1:1). Finally, all the volatile compounds were delivered into the gas chromatograph after thermal desorption. With the method described above, a total of 57 compounds were identified. The identification was completed by mass spectral search, retention index, and accurate mass measurement.  相似文献   

17.
This study aimed to develop a potential analytical method to discriminate the Chinese winter wheat according to geographical origin and cultivars. A total of 90 wheat samples of 10 different wheat cultivars among three regions were examined by headspace solid phase microextraction coupled with gas chromatography‐mass spectrometry (GC‐MS). The peak areas of 32 main volatile compounds were selected and subjected to statistical analysis, which revealed significant differences among different regions and cultivars. Multivariate analysis of variance showed a significant influence of regions, wheat genotypes, and their interaction on the volatile composition of wheat. Principal component analysis of the aromatic profile showed better visualization for wheat geographical origins. Finally, a classification model based on the linear discriminant analysis was successfully constructed for the discrimination of regions and cultivars with the correct classification percentages of 90 and 100%, respectively.  相似文献   

18.
The hyphenation of static headspace sampling with comprehensive 2D GC equipped with a modulator based on capillary flow technology and a flame ionization detector was used to separate and identify 43 representative target volatile compounds (light hydrocarbons, carbonyls, pyrazines, alcohols, furans, and benzenes) frequently detected in the roasting process of nuts. Five column combinations with differing degrees of orthogonality (one conventional and four inverted phase sets) were tested in order to obtain the best conditions for analyzing these volatile compounds. Optimization of the working conditions for each of the different column combinations was performed by means of a central composite design. The best results in terms of separation and differentiation among the different chemical groups were achieved with a combination of inverted phase columns (first dimension: highly polar, INNOWax; second dimension: mid‐polar, ZB‐35). Additionally, a reference template was developed to provide an effective and rapid analysis of the target compounds. Finally, the proposed method was successfully employed to identify volatile compounds in raw and roasted almond samples from the Spanish cultivar Largueta.  相似文献   

19.
The effects of the composition and resulting morphology on the crystallization and rheology of blends containing poly(butylene terephthalate) (PBT) and an ethylene‐co‐ethyl acrylate (EEA) copolymer, two immiscible polymers, were studied over the entire range of volume fractions. Differential scanning calorimetry (DSC) thermograms recorded during cooling showed important differences, mainly in terms of the PBT crystallization temperatures, depending on the blend composition. In addition to the classical crystallization peaks of PBT and EEA, a third crystallization peak appeared for blends containing less than 60% PBT. This peak was attributed to a delayed crystallization of PBT. This phenomenon was examined in terms of homogeneous crystallization. Linear viscoelastic measurements allowed the delayed crystallization behavior in these polymer blends to be displayed. Indeed, the variation of the storage modulus with the temperature showed increasing steps during cooling. These sudden increases appeared at temperatures very close to those at which the crystallization peaks were observed in the DSC experiments. This behavior was verified for different blend compositions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 714–721, 2004  相似文献   

20.
We report the energy‐dependent fragmentation patterns upon protonation of eight sulfides (organosulfur compounds) in Proton Transfer Reaction‐Mass Spectrometry (PTR‐MS). Studies were carried out, both, experimentally with PTR‐MS, and with theoretical quantum‐chemical methods. Charge retention usually occurred at the sulfur‐containing fragment for short chain sulfides. An exception to this is found in the unsaturated monosulfide allylmethyl sulfide (AMS), which preferentially fragmented to a carbo‐cation at m/z 41, C3H5+. Quantum chemical calculations (DFT with the M062X functional 6‐31G(d,p) basis sets) for the fragmentation reaction pathways of AMS indicated that the most stable protonated AMS cation at m/z 89 is a protonated (cyclic) thiirane, and that the fragmentation reaction pathways of AMS in the drift tube are kinetically controlled. The protonated parent ion MH+ is the predominant product in PTR‐MS, except for diethyl disulfide at high collisional energies. The saturated monosulfides R‐S‐R’ (with R<R’) have little or no fragmentation, at the same time the most abundant fragment ion is the smaller R‐S+ fragment. The saturated disulfides R‐S‐S‐R display more fragmentation than the saturated monosulfides, the most common fragments are disulfide containing fragments or long‐chain carbo‐cations. The results rationalize fragmentation data for saturated monosulfides and disulfides and represent a detailed analysis of the fragmentation of an unsaturated sulfide. Apart from the theoretical interest, the results are in support of the quantitative analysis of sulfides with PTR‐MS, all the more so as PTR‐MS is one of a few techniques that allow for ultra‐low quantitative analysis of sulfides. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号