首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A precise, high‐throughput and sensitive ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed for the determination of fluorochloridone (FLC) in rat plasma. The extraction of analytes from plasma samples was carried out by protein precipitation procedure using acetonitrile prior to UPLC‐MS/MS analysis. Verapamil was proved as a proper internal standard (IS) among many candidates. The chromatographic separation based on UPLC was well optimized. Multiple reaction monitoring in positive electrospray ionization was used with the optimized MS transitions at: m/z 312.0 → 292.0 for FLC and m/z 456.4 → 165.2 for IS. This method was well validated with good linear response (r2 > 0.998) observed over the investigated range of 3–3000 ng/mL and with satisfactory stability. This method was also characterized with adequate intra‐ and inter‐day precision and accuracy (within 12%) in the quality control samples, and with high selectivity and less matrix effect observed. Total running time was only 1.5 min. This method has been successfully applied to a pilot FLC pharmacokinetic study after oral administration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
MALDI‐TOF MS approach for determination of six quinolones residues in fillets of pangasius (Pangasionodon hypophthalmus) was studied, considering that is a very sensitive analytical technique with simple and high‐throughput operation, contributing to knowledge regarding application of this technique to the determination of small‐molecular‐weight organic compound residues in foods. LIFT‐MS/MS showed to be a successful approach to identify the presence of all quinolone residues in the fish fillet, at their respective MRL level. This study opens an important field of research for the development of simple and high‐throughput bioanalytical screening methods for the determination of veterinary drug residues in foods.  相似文献   

3.
Pogostone is an important constituent of Pogostemon cablin (Blanco) Benth., and possesses various known bioactivities. A rapid, simple and sensitive liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the analysis of pogostone in rat plasma using chrysophanol as internal standard (IS). The analytes were extracted with methanol and separated using a reversed‐phase YMC‐UltraHT Pro C18 column. Elution was achieved with a mobile phase consisting of methanol–water (75:25, v/v) for 5 min at a flow rate of 400 μL/min. The precursor/product transitions (m/z) under MS/MS detection with negative electrospray ionization (ESI) were 223.0 → 139.0 and 253.1 → 224.9 for pogostone and IS, respectively. The calibration curve was linear over the concentration range 0.05–160 µg/mL (r = 0.9996). The intra‐ and inter‐day accuracy and precision were within ±10%. The validated method was successfully applied to the preclinical pharmacokinetic investigation of pogostone in rats after intravenous (5, 10 and 20 mg/kg) and oral administration (5, 10 and 20 mg/kg). Finally, the oral absolute bioavailability of pogostone in rats was calculated to be 70.39, 78.18 and 83.99% for 5, 10 and 20 mg/kg, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The major metabolite of duloxetine is a glucuronide conjugate of 4‐hydroxy duloxetine (4‐HD). However, interestingly, there have been no reports determining concentrations of 4‐HD and no fully validated method has been established for measuring duloxetine and 4‐HD in rat plasma. We developed a method for the simultaneous quantification of duloxetine and its metabolite in rat plasma using high‐performance liquid chromatography tandem mass spectrometry. Duloxetine and 4‐HD were analyzed on a reverse‐phase C18 analytical column after protein precipitation of the plasma sample with methanol, using carbamazepine as an internal standard. The isocratic mobile phase of 5 mm ammonium acetate–methanol (4:6, v/v) was eluted at 0.4 mL/min. Quantification was performed on a triple‐quadrupole mass spectrometer using electrospray ionization, and the ion transition monitored in selective reaction monitoring mode. The coefficient of variation for assay precision was <18.0%, and the accuracy was 84.0–118.0%. This method was successfully used to measure the concentrations of duloxetine and its metabolite in plasma following the oral administration of a single 40 mg/kg dose in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive, selective and robust liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed for the rapid determination of linarin in rat plasma. Separation of the analyte and warfarin as internal standard (IS) from 100 μL rat plasma was carried out by simple protein precipitation treatment. Chromatographic separation of the analyte was performed on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of methanol–0.5% formic acid (80:20, v/v). The flow rate was 0.6 mL/min and the total run time was not more than 4.0 min. The method was validated over a wide dynamic concentration range of 1.00–1000 ng/mL for linarin. The precision and accuracy values for linarin met the acceptance criteria according to US Food and Drug Administration guidelines. Linarin was stable in the stability studies including a long‐term test (?80°C for 43 days), a short‐term test (ambient for 2 h and autosampler for 8 h) and three freeze–thaw cycles (?80–25°C). The developed assay method was applied to the pharmacokinetic study in rats after a single intramuscular administration of 713 µg/kg linarin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive, rapid and robust HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the quantification of sotalol in rat plasma. Plasma samples were precipitated with acetonitrile before analysis. The chromatographic separation was performed on an Atlantis hydrophilic interaction liquid chromatography Silica column (50 × 2.1 mm, 3 µm) with a gradient mobile phase of 10 mm NH4COOH (containing 0.2% of formic acid) as buffer A and acetonitrile as mobile phase B. Sotalol (m/z 273.2 → 255.1) and atenolol (the internal standard, IS, m/z 267.2 → 190.1) were monitored under positive ionization mode with 5500 QTRAP. Retention time of sotalol and the IS were 2.69 and 3.43 min, respectively. The linear range was 5–500 nm based on the analysis of 0.1 mL of plasma. The intrabatch precision ranged from 1.2 to 6.1%, and the inter‐batch precision was from 3.3 to 6.5%. The coefficient of variation of IS‐normalized matrix factor was 7.6%. Experiments for stability were performed and the analyte was sufficiently stable. A run time of 6 min for each injection made it possible to analyze a high throughput of plasma samples. The assay was successfully applied to the determination of sotalol in rat plasma after a micro‐dose oral administration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Henatinib maleate (R,Z)‐2‐[(5‐fluoro‐1,2‐dihydro‐2‐oxo‐3H‐indol‐3‐ylidene) methyl]‐5‐(2‐hydroxy‐3‐morpholinopropyl)‐3‐methyl‐5,6,7,8‐tetrahydro‐1H‐pyrrolo[3,2‐c] azepin‐4‐ketone maleate is a potent inhibitor of vascular endothelial growth factor receptors, and is currently under preclinical evaluation as an anticancer drug. A novel method for the quantification of henatinib maleate in rat plasma using high performance liquid chromatography–tandem mass spectrometry has been developed. The analyte (henatinib maleate) and internal standard (papaverine hydrochloride) were extracted from 50 μL of rat plasma by protein precipitation and separated on a C18 column using a mixture of 25 mm ammonium acetate buffer : methanol : acetonitrile (35 : 50 : 15, v/v/v) as mobile phase with a run time of 4.5 min. The detection was performed by means of triple quadrupole mass spectrometer equipped with an ESI interface operating in the multiple‐reaction monitoring mode. A linear response was observed over the concentration range 5.0–1000 ng/mL. The limit of quantification was 5.0 ng/mL. Both intra‐ and inter‐day precision, defined as relative standard deviation, were within 9.7%. Accuracy, defined as relative error, was within ± 3.1%. The developed method was successfully applied to preclinical pharmacokinetic studies of henatinib maleate in rat after a single oral administration of the drug. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and efficient liquid chromatography tandem mass spectrometry method was developed and validated for the simultaneous determination of piperaquine (PQ) and its N ‐oxidated metabolite (PQ‐M) in plasma. A simple protein precipitation procedure was used for sample preparation. Adequate chromatographic retention was achieved on a C18 column under gradient elution with acetonitrile and 2 mm aqueous ammonium acetate containing 0.15% formic acid and 0.05% trifluoroacetic acid. A triple‐quadrupole mass spectrometer equipped with an electrospray source was set up in the positive ion mode and multiple reaction monitoring mode. The method was linear in the range of 2.0–400.0 ng/mL for PQ and 1.0–50.0 ng/mL for PQ‐M with suitable accuracy, precision and extraction recovery. The lower limits of detection (LLOD) were established at 0.4 and 0.2 ng/mL for PQ and PQ‐M, respectively, using 40 μL of plasma sample. The matrix effect was negligible under the current conditions. No effect was found for co‐administrated artemisinin drugs or hemolysis on the quantification of PQ and PQ‐M. Stability testing showed that two analytes remained stable under all relevant analytical conditions. The validated method was successfully applied to a pharmacokinetic study performed in rats after a single oral administration of PQ (60 mg/kg).  相似文献   

10.
A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra‐ and inter‐day precision were in the ranges of 4.73–11.7 and 5.83–8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Xiao‐Ai‐Ping injection (XAPI) is a traditional Chinese medicine that has been widely used to treat cancer. Modern pharmacological studies have demonstrated that C21 steroids are the main active compounds in XAPI. In this study, a sensitive and specific liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated the first time for simultanenous determination of three isomeric pregnane genins (17β‐tenacigenin B, tenacigenin B and tenacigenin A) and their corresponding glycosides (tenacigenoside A, tenacissoside F and marsdenoside I) from XAPI in rat plasma. A simple liquid–liquid extraction technique was used after the addition of dexamethasone acetate as internal standard. The chromatography separation of analytes was achieved on an Agilent Zorbax Eclipse XDB‐C18 column (3.5 µm, 150 × 3 mm i.d.) using methanol–water as mobile phase in a gradient elution program. Detection was performed in multiple reaction monitoring mode using electrospray ionization in the negative ion mode. The method showed satisfactory linearity over a concentration range 5.00–2000.00 ng/mL for tenacigenin B, tenacigenin A, marsdenoside I and tenacissoside F (r2 > 0.99), 10.00–4000.00 ng/mL for 17β‐tenacigenin B and tenacigenoside A (r2 > 0.99). Intra‐ and inter‐day precisions (valued as relative standard deviation) were <9.00% and accuracies (as relative error) in the range ?6.31 to 7.23%. Finally, this validated method was successfully applied to the pharmacokinetic study of XAPI after intravenous administration to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Osthole, a major component isolated from the fruit of Cnidium monnieri (L.) Cusson, has been widely used in traditional Chinese medicine. We developed and validated a rapid and sensitive LC‐MS/MS method for the quantification of osthole in rat plasma. Sample preparation involved simple liquid–liquid extraction by ethyl acetate after addition of imperatorin as internal standard (IS). The analyte was separated using a C18 column with the mobile phase of methanol–0.1% formic acid (80:20, v/v) at a flow rate of 0.4 mL/min. The elutes were detected under positive electrospray ionization in multiple reaction monitoring mode. The method was sensitive with 0.5 ng/mL as the lower limit of detection. Good linearity was obtained over the range of 1.0–500.0 ng/mL. The intra and inter‐batch accuracy for osthole in rat plasma samples ranged from 99.5 to 108.1% and the variation was <8.9%. The stability, extraction efficiency and matrix effect were also acceptable. This method was successfully applied to the pharmacokinetic study of osthole in rat after intravenous and oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The present investigation describes the development and validation of a sensitive liquid chromatography–mass spectrometry/mass spectrometry (LC‐MS/MS) method for the estimation of dorsomorphin in rat plasma. A sensitive LC‐MS/MS method was developed using multiple reaction monitoring mode, with the transition of m/z (Q1/Q3) 400.2/289.3 for dorsomorphin and m/z (Q1/Q3) 306.2/236.3 for zaleplon. Chromatographic separation was achieved on a reverse phase Agilent XDB C18 column (100 × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile and 5 mm ammonium acetate buffer (pH 6.0) 90:10 v/v, at a flow rate of 0.8 mL/min. The effluence was ionized in positive ion mode by electrospray ionization (ESI) and quantitated by mass spectrometry. The retention times of dorsomorphin and internal standard were found to be 2.13 and 1.13 min, respectively. Mean extraction recovery of dorsomorphin and internal standard in rat plasma was above 80%. Dorsomorphin calibration curve in rat plasma was linear (r2 ≥ 0.99) ranging from 0.005 to 10 µg/mL. Inter‐day and intra‐day precision and accuracy were found to be within 85–115% (coefficient of variation). This method was successfully applied for evaluation of the oral pharmacokinetic profile of dorsomorphin in male Wistar rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Methylphenidate, a psychostimulant used for the treatment of attention deficit hyperactivity disorder and narcolepsy, is administered as a 50:50 racemic mixture, despite the fact that d‐methylphenidate has been shown to have greater pharmacologic activity. This paper presents a validated LC‐MS/MS approach to separation and quantification of methylphenidate enantiomers using a vancomycin column and triethylammonium acetate to enhance the chiral separation. The method is applicable to the monitoring of these enantiomers in mouse brain, with a limit of detection of 0.5 ng/mL and a lower limit of quantification of 7.5 ng/mL. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A novel, sensitive and rapid ultra‐performance liquid chromatography–tandem mass spectrometric method for the quantification of chikusetsusaponin IVa (CHS‐IVa) in rat plasma was established and validated. Plasma samples were pre‐treated by precipitation of protein with acetonitrile and chromatographed on a Waters Symmetry C18 analytical column (4.6 × 50 mm, i.d., 3.5 μm) using a mobile phase consisting of methanol and water containing 0.05% formic acid (55:45, v/v) at a flow rate of 0.4 mL/min. The deprotonated molecular ions [M ? H] were employed in electrospray negative ionization mode and selected reaction monitoring transitions were performed for detection. The calibration curves exhibited good linearity (r > 0.99) over the range of 0.5–1000 ng/mL for CHS‐IVa. The recoveries of CHS‐IVa were >92.5% and exhibited no severe matrix effect. This method was successfully applied in the pharmacokinetic study of CHS‐IVa in rats. For oral administration, the plasma concentrations of CHS‐IVa increased to a peak value at 0.35 ± 0.14 h, followed by a gradual decrease to the lower limit of quantitation in 24 h. For intravenous administration, the plasma concentrations of CHS‐IVa decreased quickly (t1/2, 1.59 ± 0.25 h). The absolute bioavailability of CHS‐IVa in rats was 8.63%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

18.
A simple, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the determination of calceorioside B (CLB) in rat plasma. Detection was performed on a Thermo Scientific Hypersil Gold chromatography column using isocratic elution with a mobile phase of methanol–5 m m ammonium acetate–formic acid (70:30:0.1, v/v/v). Mass spectrometry was performed in selection reaction monitoring mode using a positive electrospray ionization interface. Good linearity was found for CLB in plasma in the linear range of 1.00–500 ng/mL (r > 0.9960). The validated method was successfully applied to the pharmacokinetic study of CLB in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
We developed and validated a simple, sensitive, selective and reliable LC–ESI‐MS/MS method for direct quantitation of dropropizine enantiomers namely levodropropizine (LDP) and dextrodropropizine (DDP) in rat plasma without the need for derivatization as per regulatory guidelines. Dropropizine enantiomers and carbamazepine (internal standard) were extracted from 50 μL rat plasma using ethyl acetate. LDP and DDP resolved with good baseline separation (Rs = 4.45) on a Chiralpak IG‐3 column. The mobile phase consisted of methanol with 0.05% diethylamine pumped at a flow rate of 0.5 mL/min. Detection and quantitation were done in multiple reaction monitoring mode following the transitions m/z 237 → 160 and 237 → 194 for dropropizine enantiomers and the internal standard, respectively, in the positive ionization mode. The proposed method provided accurate and reproducible results over the linearity range of 3.23–2022 ng/mL for each enantiomer. The intra‐ and inter‐day precisions were in the ranges of 3.38–13.6 and 5.11–13.8 for LDP and 4.19–11.8 and 8.89–10.1 for DDP. Both LDP and DDP were found to be stable under different stability conditions. The method was successfully used in a stereoselective pharmacokinetic study of dropropizine enantiomers in rats following oral administration of racemate dropropizine at 100 mg/kg. The pharmacokinetic results indicate that the disposition of dropropizine enantiomers is not stereoselective and chiral inversion does not occur in rats.  相似文献   

20.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号