首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The process of ion resonance dipolar excitation in a linear ion trap by 2 ejection waveforms with close frequencies is studied. The physical mechanism of increasing the resolving power using the ion excitation is a nonlinearity of the electric radio frequency fields caused by space charge. Using 2 resonance forces with 2 close frequencies leads to the completion of 2 excitation processes. In the case of the perfect quadrupole electric field, the ion motion equations are linear, and as a result, the respondent ion ensemble is also a linear and valid superposition principle. Nevertheless, the resolution increases (20%) in the case of lack of a space charge in an operating mode with a dual‐frequency. The numerical simulations show that the mass shift is removed, and the mass resolution is increased via dual‐frequency resonance excitation when the frequency difference (approximately 2.5 kHz) is relatively small and the phase difference of 2 harmonic signals is even at a high linear ion density of up to 50 000 ions per radius field r0 .  相似文献   

2.
We demonstrate operation of the first cryogenic 2D linear ion trap (LIT) with mass‐selective capabilities. This trap presents a number of advantages for infrared ion “action” spectroscopy studies, particularly those employing the “tagging/messenger” spectroscopy approach. The high trapping efficiencies, trapping capacities, and low detection limits make 2D LITs a highly suitable choice for low‐concentration analytes from scarce biological samples. In our trap, ions can be cooled down to cryogenic temperatures to achieve higher‐resolution infrared spectra, and individual ions can be mass selected prior to irradiation for a background‐free photodissociation scheme. Conveniently, multiple tagged analyte ions can be mass isolated and efficiently irradiated in the same experiment, allowing their infrared spectra to be recorded in parallel. This multiplexed approach is critical in terms of increasing the duty cycle of infrared ion spectroscopy, which is currently a key weakness of the technique. The compact design of this instrument, coupled with powerful mass selection capabilities, set the stage for making cryogenic infrared ion spectroscopy viable as a bioanalytical tool in small molecule identification.  相似文献   

3.
This article reports on some theoretical studies concerning the impulsional mode of a cylindrical ion trap (CIT) supplied with a periodic impulsional radio frequency (rf) voltage of the form VaccosΩt/(1 ? kcost) with 0 ≤ k < 1. The performance characteristics of CIT impulsional mode, for the twelve stability regions, were computed using fifth order Runge‐Kutta method and were compared to the classical sinusoidal mode k = 0. Also, the results show that, for the same equivalent operating point in two stability diagrams (having the same βz) the associated modulated secular ion frequencies behavior are the same. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The feasibility of experimental design in combination with subsequent response surface modelling was illustrated for the prediction and interpretation of tandem mass spectrometric (MS/MS) fragmentation data using a linear quadrupole ion trap under various experimental conditions. The instrumental parameters included were (i) the pressure of the collision gas, (ii) the collision energy, (iii) the fill time of the linear ion trap and (iv) the scan rate. The spectral intensity and width of five fragment ions of the doubly charged neuro-active peptide bombesin were used for evaluation, and all experiments were performed so as to resemble the results obtained from a liquid chromatographic peak. The reported results show how fairly simple mathematical tools can be utilized successfully to describe fundamental mechanisms associated with multiple collisional activation and collision-induced dissociation processes without an extensively controlled experimental environment. Most beneficial, using the suggested approach, is the ability to study interaction (synergistic) effects between various parameters. As was realized from the results, many interaction effects are indeed significant. For example, the effect on the signal intensity of different collision gas pressure settings is strongly dependent on the settings of the other parameters. The described approach can easily be adopted for optimization purposes of any MS/MS experiment.  相似文献   

5.
Substitution reactions between gaseous ions and neutral substrate molecules are of ongoing high interest. To investigate these processes in a qualitative and quantitative manner, we have constructed a device, with which a defined amount of a volatile substrate can be mixed with a defined amount of helium gas and added into a three‐dimensional quadrupole ion trap. From the known inner volume of the device, the known ratio nsubstrate:nHe of the mixture, and the determined absolute partial pressure of helium in the ion trap, we can derive the partial pressure of the substrate in the ion trap and, thus, convert the directly observable pseudo–first‐order rate constants of the substitution reactions into absolute bimolecular rate constants. We have tested the device by investigating a series of SN2 reactions of Br ? and CF3CH2O ? anions as well as ligand exchange reactions of ligated Na+ cations. As the obtained results suggest, the described device makes it possible to determine the bimolecular rate constants of substitution reactions as well as other ion‐molecule reactions with satisfactory accuracy and reliability.  相似文献   

6.
Food allergen research has made giant steps in the last years thanks to the features offered by the latest technology of mass analyzers placed on the market allowing multiplex sensitive detection of proteins. Potentials and features of two mass analyzers namely a linear ion trap capable of performing a data dependent or selected reaction monitoring analysis and an OrbitrapTM stand‐alone MS enabling a broadband fragmentation without mass selection at highest mass resolving power are herein described and applied to the multiplex screening of allergens in a type of wine chosen as a reference matrix. Quantitative and confirmative capabilities of both platforms were assessed on the specific case study, the multiple detection of egg and milk ‐related proteins, typically employed in white wines as fining agents. Commercial bioinformatic tools used for a quick allergen identification will be also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A Fourier transform operating mode is applied to an ion trap. The trap is truncated at 2r(0) and presents unwanted defects that induce confinement electric-field non-linearities. Ion axial secular-motion spectrum is examined by experiments near the resonance line beta(z) = 0.5. Ion-loss processes and ion axial-motion peak splitting are observed. In the non-linear ion trap, the ion-motion frequency depends on its initial conditions in position and velocity. This brings an enlargement of the motion-frequency peak and limits the resolution. With a 2r(0) truncated ion trap, the Fourier transform ion trap mass spectrometer (FTIT-MS) leads experimentally to a mass resolution of about 4000 at 130 u.  相似文献   

8.
The fragmentation of fragile ions during the application of an isolation waveform for precursor ion selection and the resulting loss of isolated ion intensity is well‐known in ion trap mass spectrometry (ITMS). To obtain adequate ion intensity in the selected reaction monitoring (SRM) of fragile precursor ions, a wider ion isolation width is required. However, the increased isolation width significantly diminishes the selectivity of the channels chosen for SRM, which is a serious problem for samples with complex matrices. The sensitive and selective quantification of many lipid molecules, including ceramides from real biological samples, using a linear ion trap mass spectrometer is also hindered by the same problem because of the ease of water loss from protonated ceramide ions. In this study, a method for the reliable quantification of ceramides using SRM with near unity precursor ion isolation has been developed for ITMS by utilizing alternative precursor ions generated by in‐source dissociation. The selected precursor ions allow the isolation of ions with unit mass width and the selective analysis of ceramides using SRM with negligible loss of sensitivity. The quantification of C18:0‐, C24:0‐ and C24:1‐ceramides using the present method shows excellent linearity over the concentration ranges from 6 to 100, 25 to 1000 and 25 to 1000 nM, respectively. The limits of detection of C18:0‐, C24:0‐ and C24:1‐ceramides were 0.25, 0.25 and 5 fmol, respectively. The developed method was successfully applied to quantify ceramides in fetal bovine serum. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
TJ0711 (1‐[4‐(2‐methoxyethyl)phenoxy]‐3‐[2‐(2‐methoxyphenoxy)ethylamino]‐2‐propanol) is a novel β‐adrenoreceptor blocker with vasodilating activity. The aim of this study was to investigate the in vitro metabolic properties of TJ0711 from both qualitative and quantitative aspects using mouse, rat, dog, and human liver microsomes as well as rat hepatocytes. Two modern liquid chromatography with tandem mass spectrometry systems, ultra high performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry, were utilized for the analysis. To better characterize the metabolic pathways of TJ0711, two major metabolites were incubated under the same conditions as that for TJ0711. TJ0711 was extensively metabolized in vitro, and a total of 34 metabolites, including 19 phase I and 15 phase II metabolites, were identified. Similar metabolite profiles were observed among species, and demethylation, hydroxylation, carboxylic acid formation, and glucuronidation were proposed as the major metabolic routes. Significant interspecies differences were observed in the metabolic stability studies of TJ0711. Furthermore, gender differences were significant in mice, rats, and dogs, but were negligible in humans. The valuable information provided in this work will be useful in planning and interpreting further pharmacokinetic, in vivo metabolism and toxicological studies of this novel β‐blocker.  相似文献   

10.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Stellera chamaejasme, a famous toxic herb, has been used in traditional Chinese medicine to treat various diseases. For decades, increasing attention in modern pharmacological studies has been drawn to S. chamaejasme because of its potential anti‐tumor, anti‐virus, and anti‐fungus activities. However, due to the intrinsic complexity of chemical constitutes, hardly any investigations formed an overall recognition for the chemical profiles of this herb. In this study, a rapid and sensitive ultra‐high performance liquid chromatography coupled with linear ion trap‐Orbitrap mass spectrometry method was developed to characterize the chemical components of S. chamaejasme extracts. Based on optimized ultra‐high performance liquid chromatography and mass spectrometry conditions and systematic fragment ions‐based strategy, a total of 47 components including flavones, diterpenes, coumarins, and lignans were simultaneously detected and identified or tentatively identified for the first time. The MSn fragmentation patterns of all the characterized compounds in positive or negative electrospray ionization modes were also explored and summarized. These results provided essential data for further pharmacological research on S. chamaejasme. Moreover, the method was demonstrated to be an efficient tool for rapid qualitative analysis of secondary metabolites from natural resources.  相似文献   

12.
Glycopeptidolipids (GPLs) are abundant in the cell walls of different species of mycobacteria and consist of tripeptide‐amino‐alcohol core of D‐Phe‐D‐allo‐Thr‐D‐Ala‐L‐alaninol linked to 3‐hydroxy or 3‐methoxy C26–34 fatty acyl chain at the N‐terminal of D‐Phe via amide linkage, and a 6‐deoxytalose (6‐dTal) and an O‐methyl rhamnose residues, respectively, attach to D‐allo‐Thr and the terminal L‐alaninol. They are important cell‐surface antigens that are implicated in the pathogenesis of opportunistic mycobacteria belonging to the Mycobacterium avium complex. In this contribution, we described multiple‐stage linear ion trap in conjunction with high‐resolution mass spectrometry towards structural characterization of complex GPLs as [M + Na]+ ions isolated from Mycobacterium smegmatis, a fast‐growing and non‐pathogenic mycobacterial species. Following resonance excitation in an ion trap, MSn spectra of the [M + Na]+ ions of GPLs contained mainly b and y series ions that readily determine the peptide sequence. Fragment ions from MSn also afford locating the 6‐dTal and O‐methyl rhamnose residues linked to the D‐allo‐Thr and terminal L‐alaninol of the peptide core, respectively, as well as recognizing the modifications of the glycosides, including their acetylation and methylation states and the presence of succinyl group. The GPL families consisting of 3‐hydroxy fatty acyl and of 3‐methoxy fatty acyl substituents are readily distinguishable. The MS profiles of the GPLs from cells are dependant on the conditions they were grown, and several isobaric isomers were identified for many of the molecular species. These multiple‐stage mass spectrometric approaches give detailed structures of GPL in complex mixtures of which the isomeric structures are difficult to define using other analytical methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Systematic investigations have been performed to study the effect of strongly coupled plasma on the dynamic polarizabilities, low‐lying energy levels, oscillator strengths, and transition probabilities for the helium isoelectronic ions Li+, Be2+, B3+, C4+, N5+, O6+, F7+, and Ne8+. An ion‐sphere (IS) model of the plasma has been adopted and time‐dependent perturbation theory has been applied to calculate the energy levels and other transition properties. Systematic trend is observed for the spectroscopic properties along the isoelectronic sequence under a given plasma strength and also for a given ion under different plasma strengths. The ionization potential for a given ion is found to decrease, and the number of bound excited states has become finite under increased plasma strengths. The spectral line shifts under such plasma environment have been calculated. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

14.
In this study, high‐performance liquid chromatography coupled with amaZon SL high‐performance ion trap mass spectrometry was used to analyze the target components in white chrysanthemum flowers of Hangzhou. Twenty‐one components were detected and identified in both white chrysanthemum flowers of Hangzhou samples by using target compound analysis. Furthermore, seven new compounds in white chrysanthemum flowers of Hangzhou were found and identified by analyzing the fragment ion behavior in the mass spectra. The established method can be expedient for the global quality investigation of complex components in herbal medicines and food.  相似文献   

15.
In this report, the in vitro metabolism of Strychnos alkaloids was investigated using liquid chromatography/high‐resolution mass spectrometry for the first time. Strychnine and brucine were selected as model compounds to determine the universal biotransformations of the Strychnos alkaloids in rat liver microsomes. The incubation mixtures were separated by a bidentate‐C18 column, and then analyzed by on‐line ion trap/time‐of‐flight mass spectrometry. With the assistance of mass defect filtering technique, full‐scan accurate mass datasets were processed for the discovery of the related metabolites. The structural elucidations of these metabolites were achieved by comparing the changes in accurate molecular masses, calculating chemical component using Formula Predictor software and defining sites of biotransformation based upon accurate MSn spectral information. As a result, 31 metabolites were identified, of which 26 metabolites were reported for the first time. These biotransformations included hydroxylation, N‐oxidation, epoxidation, methylation, dehydrogenation, de‐methoxylation, O‐demethylation, as well as hydrolysis reactions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The application of a new hybrid RF/DC quadrupole-linear ion trap mass spectrometer to support drug metabolism and pharmacokinetic studies is described. The instrument is based on a quadrupole ion path and is capable of conventional tandem mass spectrometry (MS/MS) as well as several high-sensitivity ion trap MS scans using the final quadrupole as a linear ion trap. Several pharmaceutical compounds, including trocade, remikiren and tolcapone, were used to evaluate the capabilities of the system with positive and negative turbo ionspray, using either information-dependent data acquisition (IDA) or targeted analysis for the screening, identification and quantification of metabolites. Owing to the MS/MS in-space configuration, quadrupole-like CID spectra with ion trap sensitivity can be obtained without the classical low mass cutoff of 3D ion traps. The system also has MS(3) capability which allows fragmentation cascades to be followed. The combination of constant neutral loss or precursor ion scan with the enhanced product ion scan was found to be very selective for identifying metabolites at the picogram level in very complex matrices. Owing to the very high cycle time and, depending on the mass range, up to eight different MS experiments could be performed simultaneously without compromising chromatographic performance. Targeted product ion analysis was found to be complementary to IDA, in particular for very low concentrations. Comparable sensitivity was found in enhanced product ion scan and selected reaction monitoring modes. The instrument is particularly suitable for both qualitative and quantitative analysis.  相似文献   

17.
Considering the vast variety of synthetic cannabinoids and herbal mixtures – commonly known as ‘Spice’ or ‘K2’ – on the market and the resulting increase of severe intoxications related to their consumption, there is a need in clinical and forensic toxicology for comprehensive up‐to‐date screening methods. The focus of this project aimed at developing and implementing an automated screening procedure for the detection of synthetic cannabinoids in serum using a liquid chromatography‐ion trap‐MS (LC‐MSn) system and a spectra library‐based approach, currently including 46 synthetic cannabinoids and 8 isotope labelled analogues. In the process of method development, a high‐temperature ESI source (IonBoosterTM, Bruker Daltonik) and its effects on the ionization efficiency of the investigated synthetic cannabinoids were evaluated and compared to a conventional ESI source. Despite their structural diversity, all investigated synthetic cannabinoids benefitted from high‐temperature ionization by showing remarkably higher MS intensities compared to conventional ESI. The employed search algorithm matches retention time, MS and MS2/MS3 spectra. With the utilization of the ionBooster source, limits for the automated detection comparable to cut‐off values of routine MRM methods were achieved for the majority of analytes. Even compounds not identified when using a conventional ESI source were detected using the ionBooster‐source. LODs in serum range from 0.1 ng/ml to 0.5 ng/ml. The use of parent compounds as analytical targets offers the possibility of instantly adding new emerging compounds to the library and immediately applying the updated method to serum samples, allowing the rapid adaptation of the screening method to ongoing forensic or clinical requirements. The presented approach can also be applied to other specimens, such as oral fluid or hair, and herbal mixtures and was successfully applied to authentic serum samples. Quantitative MRM results of samples with analyte concentrations above the determined LOD were confirmed as positive findings by the presented method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Amantadine‐functionalized magnetic microspheres (Fe3O4@SiO2@ADME) were prepared and applied as magnetic solid‐phase extraction (MSPE) adsorbents for the enrichment and analysis of five opium alkaloids in hotpot seasoning samples with liquid chromatography coupled to quadrupole linear ion trap mass spectrometry (LC‐QqQLIT‐MS/MS). The adsorbents could strongly adsorb the opium alkaloids via hydrogen‐bonding, hydrophobic, and π–π conjugation effects. The established MSPE, combined with stable isotope‐labeled internal standards could reduce the matrix effect significantly. In the LC‐QqQLIT‐MS/MS analysis, the precursor and product ions of the analytes were monitored quantitatively and qualitatively by the multiple reaction monitoring and enhanced product ion mode, improving the reliability of detection for real samples. Under the optimum conditions, the limits of detection and limits of quantification were found to be in the range of 0.05–0.8 μg/kg and 0.25–2.5 μg/kg, respectively, and the recoveries of all targets were in the range 80.1–115.3%, with the intra‐day and inter‐day relative standard deviations being less than 9.4 and 10.7%, respectively. Finally, the proposed method was successfully applied to the determination of illegal additives of opium alkaloids in hotpot seasoning samples.  相似文献   

19.
The mass spectrometric (MS) analysis of flavone di‐C‐glycosides has been a difficult task due to pure standards being unavailable commercially and to that the reported relative intensities of some diagnostic ions varied with MS instruments. In this study, five flavone di‐C‐glycoside standards from Viola yedoensis have been systematically studied by high performance liquid chromatography‐electrospray ionization‐tandem ion trap mass spectrometry (HPLC‐ESI‐IT‐MSn) in the negative ion mode to analyze their fragmentation patterns. A new MS2 and MS3 hierarchical fragmentation for the identification of the sugar nature (hexoses or pentoses) at C‐6 and C‐8 is presented based on previously established rules of fragmentation. Here, for the first time, we report that the MS2 and MS3 structure‐diagnostic fragments about the glycosylation types and positions are highly dependent on the configuration of the sugars at C‐6 and C‐8. The base peak (0,2X10,2X2? ion) in MS3 spectra of di‐C‐glycosides could be used as a diagnostic ion for flavone aglycones. These newly proposed fragmentation behaviors have been successfully applied to the characterization of flavone di‐C‐glycosides found in V. yedoensis. A total of 35 flavonoid glycosides, including 1 flavone mono‐C‐hexoside, 2 flavone 6,8‐di‐C‐hexosides, 11 flavone 6,8‐di‐C‐pentosides, 13 flavone 6,8‐C‐hexosyl‐C‐pentosides, 5 acetylated flavone C‐glycosides and 3 flavonol O‐glycosides, were identified or tentatively identified on the base of their UV profiles, MS and MSn (n = 5) data, or by comparing with reference substances. Among these, the acetylated flavone C‐glycosides were reported from V. yedoensis for the first time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号