首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple oxide classification has been proposed on the basis of correlation between electronic polarizabilities of the ions and their binding energies determined by XPS. Three groups of oxides have been considered taking into account the values obtained on refractive-index- or energy-gap-based oxide ion polarizability, cation polarizability, optical basicity, O 1s binding energy, metal (or nonmetal) binding energy, and Yamashita-Kurosawa's interaction parameter of the oxides. The group of semicovalent predominantly acidic oxides includes BeO, B2O3, P2O5, SiO2, Al2O3, GeO2, and Ga2O3 with low oxide ion polarizability, high O 1s binding energy, low cation polarizability, high metal (or nonmetal) outermost binding energy, comparatively low optical basicity, and strong interionic interaction, leading to the formation of strong covalent bonds. Some main group oxides so-called ionic or basic such as CaO, In2O3, SnO2, and TeO2 and most transition metal oxides show relatively high oxide ion polarizability, O 1s binding energy in a very narrow medium range, high cation polarizability, and low metal (or nonmetal) binding energy. Their optical basicity varies in a narrow range and it is close to that of CaO. The group of very ionic or very basic oxides includes CdO, SrO, and BaO as well as PbO, Sb2O3, and Bi2O3, which possess very high oxide ion polarizability, low O 1s binding energy, very high cation polarizability, and very low metal (or nonmetal) binding energy. Their optical basicity is higher than that of CaO and the interionic interaction is very weak, giving rise to the formation of very ionic chemical bonds.  相似文献   

2.
Recently, nonmetal doping has exhibited its great potential for boosting the hydrogen evolution reaction (HER) of transition-metal (TM)-based electrocatalysts. To this end, this work overviews the recent achievements made on the design and development of the nonmetal-doped TM-based electrocatalysts and their performance for the HER. It is also shown that by rationally doping nonmetal elements, the electronic structures of TM-based electrocatalysts can be effectively tuned and in turn the Gibbs free energy of the TM for adsorption of H* intermediates (ΔGH*) optimized, consequently enhancing the intrinsic activity of TM-based electrocatalysts. Notably, we highlight that concurrently doping two nonmetal elements can continuously and precisely regulate the electronic structures of the TM, thereby maximizing the activity for HER. Moreover, nonmetal doping also accounts for enhancing the physical properties of the TM (i.e. surface area). Therefore, nonmetal doping is a robust strategy for simultaneous regulation of the chemical and physical features of the TM.  相似文献   

3.
In novel superatom chemistry, it is very attractive that all‐metal clusters can mimic the behaviors of nonmetal atoms and simple nonmetal molecules. Wizardly all‐metal halogen‐like superatom Al13 with 2P5 sub shell (corresponding to the 3p5 of chlorine) is the most typical example. In contrast, how to mimic the behaviors of magnetic transition‐metal atom using all‐nonmetal cluster is an intriguing challenge for superatom chemistry. In response to this based on human intuition, using quantum chemistry methods and extending jellium model from metal cluster to all‐nonmetal cluster, we have found out that all‐nonmetal octahedral B6 cluster with characteristic jellium electron configuration 1S21P62S21D8 in the triplet ground state can mimic the behaviors of transition‐metal Ni atom with electron configuration 3s23p64s23d8 in electronic configuration, physics and chemistry. Interestingly, the characteristic order of 1S1P2S1D for the B6 nonmetal cluster with short B‐B lengths is different from that of the traditional jellium model—1S1P1D2S for metal clusters with long M‐M lengths, which exhibits a novel size effect of nonmetal cluster on jellium orbital ordering. Based on the jellium electron configuration, the B6 with the spin moment value of 2μB is a new all‐nonmetal transition‐metal nickel‐like superatom exhibiting a new kind of all‐nonmetal magnetic superatom. Finding the application of the all‐nonmetal magnetic superatom, we encapsulate the magnetic superatom B6 inside fully hydrogenated fullerene forming a clathrate B6@C60H60 with the spin moment value of 2μB. As the C60H60 cage as a polymerization unit can conserve the spin moment of endohedral B6, the clathrate B6@C60H60 is a new all‐nonmetal magnetic superatom building block. Naturally, magnetic superatom structures of the B6 and B6@C60H60 may be metastable.  相似文献   

4.
Electron-impact mass spectral fragmentation patterns are reported for various aminothieno-pyridines (TPNH2) and aeylaminothtenopyridines. The molecular ion TPNH2+ shows loss of atomic hydrogen, hydrogen cyanide and both thioformyl radical and cation. TPNH2+ is the most abundant ion in the spectrum of each acylamino compound investigated. A semiquanti-tative mass spectrum of the amine TPNH2 can be obtained by deletion of selected peaks (for the acetylium and molecular ions) from the observed mass spectrum of the A-acetyl derivative.  相似文献   

5.
Vanadium oxide catalysts of the monolayer type have been prepared by means of chemisorption of vanadate(V)-anions from aqueous solutions and by chemisorption of gaseous V2O3(OH)4. Using Al2O3, Cr2O3, TiO2, CeO2 and ZrO2, catalysts with an approximately complete monomolecular layer of vanadium(V) oxide on the carrier oxides can be prepared, if temperature is not too high. Divalent metal oxides like CdO and ZnO may already form threedimensional surface vanadates at moderate temperature. The thermal stability of a monolayer catalyst is related to the parameter z/a, i. e. the ratio of the carrier cation charge to the sum of ionic radii of carrier cation and oxide anion. Thus, monolayer catalysts will be thermally stable only under the condition that z/a is not too high (aggregated catalyst) nor too small (ternary compound formation).  相似文献   

6.
We evaluated the individual atom contributions to the second harmonic generation (SHG) coefficients of LiCs2PO4 (LCPO) by introducing the partial response functionals on the basis of first principles calculations. The SHG response of LCPO is dominated by the metal‐cation‐centered groups CsO6 and LiO4, not by the nonmetal‐cation‐centered groups PO4 expected from the existing models and theories. The SHG coefficients of LCPO are determined mainly by the occupied orbitals O 2p and Cs 5p as well as by the unoccupied orbitals Cs 5d and Li 2p. For the SHG response of a material, the polarizable atomic orbitals of the occupied and the unoccupied states are both important.  相似文献   

7.
One-electron oxidation and one-electron reduction of the electron-rich acetylene derivative, hexakis(trimethylsilyl)-2-butyne [H3C3)3Si]3CCCC[Si(CH3)3]3, unexpectedly produce the persistent radical cation and radical anion of the hitherto unknown neutral compound, tetrakis(trimethylsilyl)butatriene (R3Si)2CCCC(SiR3)2. The radical anion can also be generated from the corresponding diacetylene, bis(trimethylsilyl)-1,3-butadiyne R3SiCCCCSiR3 and potassium metal, obviously via disproportionation. Photoelectron and electron spin resonance spectroscopic data permit the detection and characterization of the individual species. The stability of both the radical anion and the radical cation of the same molecule can be rationalized by the unique combination of the twofold butatriene π-system with 4 R3Si substituents, which can act either as electron donors or electron acceptors and thus stabilize the ground state of either the cation or the anion.  相似文献   

8.
Heterosegmented statistical associating fluid theory is used to represent the CO2 solubility in ionic liquids. As in our previous work, ionic liquid molecule is divided into several groups representing the alkyls, cation head, and anion. The cation of ionic liquid is modeled as a chain molecule that consists of one spherical segment representing the cation head and groups of segments of different types representing different substituents (alkyls). The anion of ionic liquid is modeled as a spherical segment of different type. To account for the electrostatic/polar interaction between the cation and anion, the spherical segments representing cation head and anion each have one association site, which can only cross associate. Carbon dioxide is modeled as a molecule with three association sites, two sites of type O and one site of type C, where sites of the same type do not associate with each other. The parameters of CO2 are obtained from the fitting of the density and the saturation vapor pressure of CO2. For the CO2-ionic liquid systems, cross association between site of type C in CO2 and another association site in anion is allowed to occur to account for the Lewis acid–base interaction. The parameters for cross association interactions and the binary interaction parameters used to adjust the dispersive interactions between unlike segments are obtained from the fitting of the available CO2 solubility in ionic liquids. The model is found to well represent the CO2 solubility in the imidazolium ionic liquids from 283 to 415 K and up to 200 bar.  相似文献   

9.
Influence of cation size on solvation strength, diffusion, and kinetics of the association reaction with anions O2 in aprotic solvents, such as acetonitrile and dimethyl sulfoxide, has been investigated by means of molecular dynamics simulations. The work is motivated by the need to understand the molecular nature of the solvent-induced changes in capacity of Li-air batteries. We have shown that the dependence of the solvation shell stability on the cation size has a maximum at a particular ion radius that corresponds to a solvent coordination number of 4. The shell stability maximum coincides with the diffusion coefficient minimum. The variation of the cation shell stability has a crucial impact on the kinetics of the cation-O2 association. We have demonstrated that profound inhibition of the association reaction for Li+ in dimethyl sulfoxide is a result of the lock-and-key effect that cannot be described in the framework of Hard Soft Acid Base theory.  相似文献   

10.
The excellent birefringent materials are needed for optical systems. Herein, we reported a new compound, the first tin borate chloride, Sn2B5O9Cl (SBOC) with a large birefringence (0.168 at 546 nm) measured by the polarizing microscope. Its birefringence is 16 times that of the isostructural Ba2B5O9Cl (BBOC) compound (0.010@ at 546 nm). The results show that the birefringence enhancement originates mainly from the Sn2+ polyhedra. We propose that the birefringence can be enlarged by substituting the alkaline‐earth metal cation by the Sn2+ cation in the isostructural borate with small birefringence. This strategy will guide the discovery of large birefringent materials in the future.  相似文献   

11.
HCo(CO)4 is known to be the active species in the cobalt-catalyzed hydroformylation reaction. Although it is known that the anion [Co(CO)4] is catalytically inactive, some cobalt carbonyl-containing ionic liquids are surprisingly able to catalyze hydroformylation reactions. However, only ionic liquids with protic cations demonstrate activity, whilst aprotic cations such as BMIM+ result in a completely inactive compound. The four applied cobalt-containing ionic liquids differ only by the cation component. Their different performance in catalytic activity allows the presumption of cooperative effects between the cation and the anion. These fundamental influences of the cation on the hydroformylation kinetics give hints for the reaction mechanism of biphasic hydroformylation reactions as well as on the reaction pathways of the conventional hydroformylation reaction under different reaction conditions.  相似文献   

12.
Preparation and Properties of Compounds with Heteropolycations. I. Dodecaaluminogermaniumsulfate [GeO4Al12(OH)24(H2O)12](SO4)4 · xH2O By reaction of aqueous solutions of aluminum chloride and sodium germanate and subsequent precipitation as sulfate a cristalline product is obtained, which is the title compound according to chemical analysis and 27Al-NMR in analogy to the wellknown tridecameric basic aluminum cation. From thermal analysis and kinetic measurements is concluded that the title compound has a higher stability than the tridecameric basic aluminum cation.  相似文献   

13.
14.
The title compound ( 1 ) is prepared in situ from 5-methylenebicyclo[2.2.0]hex-2-ene by pyrolysis and subsequent photoionization in a photoelectron spectrometer or by X-ray irradiation in an Ar matrix where its electronic absorption spectrum is obtained. The results confirm earlier conjectures that the title cation exists as a distinct entity on the C7H8+ hypersurface and can be obtained photochemically from other isomeric ions or by a McLafferty rearrangement. The enthalpies of formation of 1 , its precursor and the corresponding radical ions are compared to the most recent data available for other C7H8 isomers and their ions. It is shown that the thermodynamic stability of 1 + is closer to that of toluene cation than concluded on the basis of earlier results.  相似文献   

15.
Glass electrodes behaving as protodes or alkali cation electrodes in aqueous systems respond to the protonated solvent in liquid ammonia at — 38°C and can be used to measure the activity of NH4+. Deviations in the response to the activity of NH4+ are shown to be due to an alkali metal function (alkaline error) of the glass electrodes. The selectivity of glass electrodes for different alkali metal cations changes drastically from water to liquid ammonia.  相似文献   

16.
The various physical properties of lead-free double perovskites A2PdX6 (A = K, Rb, Cs; X  = Cl, Br, I) are revealed for the first time. The calculated structural parameters of these Pd-based compounds are consistent with the experimental data. It is likely to possess a tetragonal structure for K2PdI6 at room temperature. Cs2PdBr6 is dynamically stable when the pressure is in the range of 0–6.95 GPa. The mechanical properties are analysed and all the compounds are mechanically stable. The band gap trend of the A2PdX6 compound is identified when the A-site cation and halide anion are varied. Three A2PdBr6 compounds exhibit suitable band gaps for photovoltaic applications. An optimum band gap can be achieved for Cs2PdBr6 when the moderate pressure is applied. In addition, the electron shows better mobility than that of the hole for three A2PdBr6 compounds. The optical absorption coefficient of the A2PdBr6 compound is improved when the A-site cation changes from Cs to Rb to K. Applying pressure is beneficial to enhance light absorption capacity of Cs2PdBr6. The findings of this work can provide guidance for the design of potential A2PdBr6 compounds for photovoltaic applications.  相似文献   

17.
Precise values of the proton coupling constants have been determined from the ENDOR spectra of the radical cation of s-trans-buta-1,3-diene generated from the neutral compound by γ irradiation in a CFCl3 matrix at 77 K. These values are 1.119 and 1.050 mT for the pairs of exo- and endo-protons in the 1,4-positions, respectively, and 0.283 mT for the pair of protons in the 2,3-positions. A general TRIPLE resonance spectrum proves that all coupling constants have the same sign which should be negative by theory, Evidence by experiment and theory indicate that the s-trans-configuration of the neutral compound is retained upon ionization.  相似文献   

18.
Electronic structures of the ternary metal borocarbide compounds Sc2BC2, Al3BC3 and Lu3BC3 containing linear BC2 units are compared using density functional calculations. Results reveal a covalent bonding between the metallic matrix and the formally BC25− nonmetal anions which is stronger for the aluminum compound than for the two others.  相似文献   

19.
Ruthenium and osmium complexes of the type CpMX(PPh3)L (M = Ru; X = Cl, H, S2COC10H19, S2COMe; L & PPh3 and PHPh2; M = Os, X = Cl, Br, I, H, D, xanthogenate, dithiocarbamate, BPh4, L = PPh3). The compound CpOsCl(PPh3)2 is readily soluble in MeOH and in the solution the cation [CpOs(PPh3)2]+ is present. Upon addition of NaBPh4 a white compound CpOs(PPh3)2BPh4 immediately precipitates, which can not be solved in MeOH, contrary to the behaviour of the corresponding ruthenium compound.  相似文献   

20.
The electronic structures of the antifluorite‐type compound Mg2Si is described in which a sublattice of short cation–cation contacts creates a very low conduction band minimum. Since Mg2Si shows n‐type conductivity without intentional carrier doping, the present result indicates that the cage defined by the cations plays critical roles in carrier transport similar to those of inorganic electrides, such as 12 CaO⋅7 Al2O3:e and Ca2N. A distinct difference in the location of conduction band minimum between Mg2Si and the isostructural phase Na2S is explained in terms of factors such as the differing interaction strengths of the Si/S 3s orbitals with the cation levels, with the more core‐like character of the S 3s leading to a relatively low conduction band energy at the Γ point. Based on these results and previous research on electrides, approaches can be devised to control the energy levels of cation sublattices in semiconductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号