首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of tribarium diyttrium hexaborate, which crystallized in the cubic system, have been obtained by spontaneous crystallization from a high‐temperature melt using Li2O–BaO–B2O3 as flux. Its structure is composed of isolated [B2O5]4− groups, irregular BaO9 polyhedra and regular YO6 polyhedra which occupy alternate sites running along the [111] direction. Irregular BaO9 polyhedra and regular YO6 polyhedra construct a three‐dimensional framework, which is reinforced by [B2O5]4− groups.  相似文献   

2.
3.
4.
The effects of heat treatment on soymilk protein denaturation were studied by differential scanning calorimetry (DSC) and electrophoresis. Transition behavior of soymilk was studied by DSC. Three endotherms were found in DSC heating curves; the transition observed at around 70°C is attributed to the denaturation of 7S (b-conglycinin) and the transition at around 90°C is to 11S (glycinin). The denaturation temperature increased with the increasing soymilk protein content. The change of electrophoretic patterns after heat treatments indicated that soy proteins were dissociated into subunits, some of which coalesced. When the heating temperature is below their denaturation temperature, the protein fractions cannot completely be denatured even after heat exposure for extended periods of time. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Xu X  Hu CL  Kong F  Zhang JH  Mao JG 《Inorganic chemistry》2011,50(18):8861-8868
Two new acentric borogermanates, Ca(10)Ge(16)B(6)O(51) (Pba2) and Cd(12)Ge(17)B(8)O(58) (P4), have been successfully synthesized by high-temperature solid-state reactions of CaCO(3) (or CdCO(3)), GeO(2), and H(3)BO(3). Both structures display the same one-dimensional (1D) [Ge(4)O(12)](n) chains composed of GeO(4) tetrahedra and GeO(6) octahedra. In Ca(10)Ge(16)B(6)O(51), neighboring 1D [Ge(4)O(12)](n) chains are condensed into a two-dimensional (2D) [Ge(4)O(10.75)](n) layer via corner sharing, and such layers are further interconnected by "isolated" BO(4) tetrahedra and B(2)O(7) dimers into a three-dimensional (3D) framework, forming 1D tunnels of 5-, 6-, and 7-MRs along the c axis that are occupied by Ca(2+) cations. In Cd(12)Ge(17)B(8)O(58), neighboring 1D [Ge(4)O(12)](n) chains are interconnected into a [Ge(4)O(10.5)](n) open framework via corner sharing with large pores filled by big [Ge(B(2)O(7))(4)](28-) clusters, leading to formation of three types of 1D tunnels of 5-, 6-, and 7-membered rings (MRs) along the c axis which are occupied by the Cd(2+) cations. Both compounds are transparent in the range of 0.3-6.67 μm and exhibit very weak SHG responses.  相似文献   

6.
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal.  相似文献   

7.
8.
IntroductionMolecularpolymerwithonedimensionalormultidimen sionalstructureassemblingthroughhydrogenbondsisanim portantresearchcontentinthesupramolecularchemistryandcrystalenginnering .1,2 Withthedevelopmentofnewtypefunctionalmaterialssuchasmolecularmagnetic ,selectedcatalysis ,reversiblecatalysis ,reversiblehost guestmolecular(ion)exchangeetc.,3themoleculardesignandsynthesishavealreadyattractedconsiderableattentioninsupramolecu larsystem .Thesupramolecularcomplexesandorganiccom poundscontainin…  相似文献   

9.
Single crystals of [Eu(C4H4O6)(H2O)2](H2O)2 were obtained from the combination of solutions of EuCl2, previously obtained by electrolysis of an aqueous solution of EuCl3, and tartraric acid, neutralized by LiOH. The crystal structure (orthorhombic, P212121, Z = 4, a = 948.9(1), b = 954.6(1), c = 1098.4(1) pm; R(F) = 0.0242 and Rw(F2) = 0.0585 for I > 2σ(I); R(F) = 0.0256 and Rw(F2) = 0.0592 for all data) is isotypic with [Ca(C4H4O6)(H2O)2](H2O)2 and [Sr(C4H4O6)(H2O)2](H2O)2 exhibiting a three‐dimensional structure. The divalent cations (Eu2+, Ca2+, Sr2+) are eight‐coordinate by oxygen atoms that originate from carboxylate and hydroxyl groups of the tartraric dianion and two of the four water molecules.  相似文献   

10.
IrIn7GeO8 = [IrIn6](GeO4)(InO4) and Compounds of the Solid Solution Series [IrIn6](Ge1+xIn1?4x/3O8) (0 ≤ x ≤ 0.75): First Oxides containing [IrIn6] Octahedra The low valent indiumoxides IrIn7GeO8 = [IrIn6](GeO4)(InO4) and [IrIn6](Ge1+xIn1?4x/3O8) (0 x ≤ 0.75) are formed by heating intimate mixtures of Ir, In, In2O3 and GeO2 in corundum crucibles under an atmosphere of argon (1420 K, 70 h). The compounds are black and semiconducting. X‐ray powder diffraction patterns can be indexed on the basis of a face centered cubic unit cell with lattice parameters ranging from a = 1012.3(1) pm (x = 0) to a = 1007.3(1) pm (x = 0.75). Characteristic building units in [IrIn6](Ge1+xIn1?4x/3O8) are isolated [IrIn6]9+ octahedra with short Ir‐In distances of 253.5 pm, which are linked via [GeO4]4? and [InO4]5? tetrahedra to a three dimensional framework. Starting from IrIn7GeO8 = [IrIn6](GeO4)(InO4), the isoelectronic substitution of 4 In3+ ions by 3 Ge4+ ions and one Ge‐vacancy leads to the formation of a solid solution series [IrIn6](GeO4)1+x(O4)x/3(InO4)1?4x/3, which shows a slight decrease in the cubic lattice parameter with increasing x. According to Rietveld refinements the structure of [IrIn6](GeO4)(InO4) exhibits a statistical distribution of the tetrahedrally coordinated Ge and In atoms ( , R(prof.) = 4.4 %, R(int.) = 2.5 %). The crystal and electronic structures of [IrIn6](GeO4)(InO4) are discussed on the basis of first principles electronic structure calculations.  相似文献   

11.
1 INTRODUCTION The design and synthesis of polynuclear com- plexes have attracted chemists?attention in the contemporary chemistry, since their clusters maybe lead to novel materials with magnetic, optical, electronic and catalytic properties of the constituent metals[1~3]. It is also prevalently interesting to synthesize high-nuclearity metal complexes for their nanoscopic dimensions[3, 4]. Spectroscopic properties of the lanthanides are widely used in the study of biological systems. …  相似文献   

12.
K4[BS4O15(OH)], Ba[B2S3O13], and Gd2[B2S6O24] were obtained by a new synthetic approach. The strategy involves initially synthesizing the complex acid H[B(HSO4)4] which is subsequently reacted in an open system with anhydrous chlorides of K, Ba, and Gd to the respective borosulfates and a volatile molecule (HCl). Furthermore, protonated borosulfates should be accessible by appropriate stoichiometry of the starting materials, particularly in closed systems, which inhibit deprotonation of H[B(HSO4)4] via condensation and dehydration. This approach led to the successful synthesis of the first divalent and trivalent metal borosulfates (Ba[B2S3O13] with band‐silicate topology and Gd2[B2S6O24] with cyclosilicate topology) and the first hydrogen borosulfate K4[BS4O15(OH)].  相似文献   

13.
Structural determinations of the magnesium(II) and barium(II) salts of pyromellitic acid (benzene‐1,2,4,5‐tetra­carboxyl­ic acid) are presented. Hexa­aqua­magnesium(II) benzene‐1,2,4,5‐tetra­carboxyl­ate(2−), [Mg(H2O)6](C10H4O8), (I), and penta­aqua­[benzene‐1,2,4,5‐tetra­carboxyl­ato(2−)]­barium(II), [Ba(C10H4O8)(H2O)5], (II), are both centrosymmetric and both possess a 1:1 metal–ligand ratio, but the two structures are found to differ in that the magnesium salt contains a hexaaqua cation and possesses only hydrogen‐bonding interactions between cations and anions, while the barium salt exhibits coordination of the carboxyl­ate ligand to the nine‐coordinate metal centre. In (I), both ions sit on a 2/m site symmetry, and in (II), the cation and anion are located on m and i site symmetries, respectively.  相似文献   

14.
15.
迄今, 在中温水热条件下已合成了大量具有空旷骨架结构的过渡金属磷酸盐微孔材料[1], 这类材料在非线性光学材料、磁性材料、超导材料及催化等诸多方面具有潜在的应用前景[2~5].  相似文献   

16.
A new uranium(V) silicate, K3(U3O6)(Si2O7), and the germanate analogue, Rb3(U3O6)(Ge2O7), have been synthesized under high-temperature, high-pressure hydrothermal conditions and characterized by single-crystal X-ray diffraction. Their structures contain uranate columns formed of triple octahedral chains of the alpha-UF5 type linked by disilicate (or digermanate) units to form a 3-D framework structure. The valence state of uranium is confirmed by X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and magnetic susceptibility.  相似文献   

17.
The labile nature of the coordinated water ligands in the organometallic aqua complex [Ru(dppe)(CO)(H(2)O)(3)][OTf](2) (1) (dppe = Ph(2)PCH(2)CH(2)PPh(2); OTf = OSO(2)CF(3)) has been investigated through substitution reactions with a range of incoming ligands. Dissolution of 1 in acetonitrile or dimethyl sulfoxide results in the facile displacement of all three waters to give [Ru(dppe)(CO)(CH(3)CN)(3)][OTf](2) (2) and [Ru(dppe)(CO)(DMSO)(3)][OTf](2) (3), respectively. Similarly, 1 reacts with Me(3)CNC to afford [Ru(dppe)(CO)(CNCMe(3))(3)][OTf](2) (4). Addition of 1 equiv of 2,2'-bipyridyl (bpy) or 4,4'-dimethyl-2,2'-bipyridyl (Me(2)bpy) to acetone/water solutions of 1 initially yields [Ru(dppe)(CO)(H(2)O)(bpy)][OTf](2) (5a) and [Ru(dppe)(CO)(H(2)O)(Me(2)bpy)][OTf](2) (6a), in which the coordinated water lies trans to CO. Compounds 5a and 6a rapidly rearrange to isomeric species (5b, 6b) in which the ligated water is trans to dppe. Further reactivity has been demonstrated for 6b, which, upon dissolution in CDCl(3), loses water and coordinates a triflate anion to afford [Ru(dppe)(CO)(OTf)(Me(2)bpy)][OTf] (7). Reaction of 1 with CH(3)CH(2)CH(2)SH gives the dinuclear bridging thiolate complex [[(dppe)Ru(CO)](2)(mu-SCH(2)CH(2)CH(3))(3)][OTf] (8). The reaction of 1 with CO in acetone/water is slow and yields the cationic hydride complex [Ru(dppe)(CO)(3)H][OTf] (9) via a water gas shift reaction. Moreover, the same mechanism can also be used to account for the previously reported synthesis of 1 upon reaction of Ru(dppe)(CO)(2)(OTf)(2) with water (Organometallics 1999, 18, 4068).  相似文献   

18.
An Anionic Oxohydroxo Complex with Bismuth(III): Na6[Bi2O2(OH)6](OH)2 · 4H2O Colourless, plate‐like, air sensitive crystals of Na6[Bi2O2(OH)6](OH)2 · 4H2O are obtained by reaction of Bi2O3 or Bi(NO3)3 · 5H2O in conc. NaOH (58 wt %) at 200 °C followed by slow cooling to room temperature. The crystal structure (triclinic, P 1¯, a = 684.0(2), b = 759.8(2), c = 822.7(2) pm, α = 92.45(3)°, ß = 90.40(3)°, γ = 115.60(2)°, Z = 1, R1, wR2 (all data), 0, 042, 0, 076) contains dimeric, anionic complexes [Bi2O2(OH)6]4— with bismuth in an ψ1‐octahedral coordination of two oxo‐ and three hydroxo‐ligands. The thermal decomposition was investigated by DSC/TG or DTA/TG and high temperature X‐ray powder diffraction measurements. In the final of three steps the decomposition product is Na3BiO3.  相似文献   

19.
The structure of [B6H9NaO14, H3BO3, 6H2O] was determined by single‐crystal X‐ray diffraction and further analyzed by FTIR spectroscopy and differential thermal/thermogravimetric analysis. The asymmetric unit contains Na–O polyhedra (distorted octahedron), [B6O8(OH)3] fundamental building blocks, one free water molecule and one free H3BO3 molecule. In the hexaborate anion, three B3O3 rings are linked by a common oxygen atom with five trigonal and one tetrahedral boron atoms. The hexaborate group is also linked to the oxygenated environment of the sodium atom by three other six‐membered rings, each of which involve two boron atoms, three oxygen atoms, and sodium as the joint atom.  相似文献   

20.
Crystal Structures of Sr(OH)2 · H2O, Ba(OH)2 · H2O (o.-rh. and mon.), and Ba(OH)2 · 3 H2O The crystal structures of Ba(OH)2 · 3 H2O (Pnma, Z = 4), γ-Ba(OH)2 · H2O (P21/m, Z = 2) and the isotypic Sr(OH)2 · H2O and β-Ba(OH)2 · H2O (Pmc21, Z = 2) were determined using X-ray single crystal data. Ba(OH)2 · 3 H2O and Ba(OH)2 · H2O mon. crystallize in hitherto unknown structure types. The structure of Ba(OH)2 · H2O mon. is strongly related to that of rare earth hydroxides M(OH)3 with space group P63/m (super group of P21/m). The metal-oxygen distances are significantly shorter for OH? ions (mean Ba—O bond lengths of all hydroxides under investigation 278.1 pm) than for H2O molecules (289.9 pm). Corresponding to other hydrates of ionic hydroxides, the water molecules form strong hydrogen bonds to adjacent OH? ions whereas the hydroxide are not H-bonded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号