首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Masking sounds can be continuously present, gated simultaneously with the signal, or gated somewhat prior to the signal. This continuum of relative onset times was explored using waveforms of the sort commonly employed in studies of comodulation masking release (CMR). There was a 50-Hz masker band centered on the 1250-Hz tonal signal, and four 50-Hz flanker bands centered at 850, 1050, 1450, and 1650 Hz. In some conditions, all four flanker bands had the same temporal envelope, and the masker band either had that same envelope (correlated presentations) or a different envelope (uncorrelated presentations). In other conditions, all five bands had different temporal envelopes (all-uncorrelated presentations). The masker band and/or the four flanker bands were either gated nearly simultaneously with the signal (burst conditions) or were gated prior to the signal by a duration that was systematically varied (fringed conditions). The eight listeners could be partitioned into three groups on the basis of their response to these fringing manipulations. Two listeners (the large fringers) showed a gradual improvement in detectability with increasing fringe duration (called a temporal decline of masking), while three others (the small fringers) showed little improvement in detectability. For the remaining three subjects, there was evidence of a "learning" effect that changed them from large fringers to small fringers over a 10-week period of listening. When present, the temporal decline of masking was greater for the correlated than for the uncorrelated comodulation condition; as a consequence, the difference in detectability between them (the comodulation masking release or CMR) increased with fringe duration. By fringing the masker and flanker bands separately and in combination, it was revealed that the temporal declines of masking were primarily attributable to the fringing of the flanker bands. In contrast, large CMRs required long fringes on both the masker and flanker bands. The above results were obtained with 50-ms signals, but generally similar data were obtained with a signal duration of 240 ms. The difficulties raised for experimentalists and theorists by such long-term practice effects are discussed.  相似文献   

2.
Waveforms that yield comodulation masking release (CMR) when they are presented simultaneously with a signal were used in a standard forward-masking procedure. The signal was a 25-ms sample of a 2500-Hz tone. The masker was a band of noise centered at 2500 Hz, 100 Hz in width, and 200 ms in duration. Presented with the masker were two or four cue bands, each 100 Hz wide and centered at various distances from the masker band. These cue bands either all had the same temporal envelope as the masker band (correlated condition) or their common envelope was different from that of the masker band (uncorrelated condition). In the initial experiments, (1) detectability of the tonal signal was 7-18 dB better when the masker band was accompanied by cue bands than when it was not--an effect that would be expected from past research on lateral suppression--but further, (2) the signal was about 3 dB more detectable in the correlated conditions than in the uncorrelated conditions. In follow-up experiments, these CMR-like differences between the correlated and uncorrelated conditions were substantially reduced (although not eliminated) by presenting a contralateral, wideband noise that was gated synchronously with the masker and/or cue bands. The implications are that the initial results were attributable in part to the "confusion effects" known to exist in certain temporal-masking situations, and that listeners are able to obtain greater information about the temporal extent of a masker band from correlated cue bands than from uncorrelated bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Comodulation detection differences using noise-band signals   总被引:1,自引:0,他引:1  
In a variant of the standard paradigm employed to study comodulation masking release (CMR), a narrow noise band was used as a signal in the presence of "cue" bands which had either the same or different temporal envelopes. The number of cue bands present ranged from zero to four; when there were two or four cue bands, they were either all presented at the same overall level or the spectral profile was "scrambled" in a haphazard manner. Different noise samples were presented within and across trials. The result was in the opposite direction from the standard CMR outcome; that is, better performance was obtained when the envelopes of the cue band(s) were uncorrelated with those of the signal band than when they were correlated. These comodulation detection differences (CDDs) ranged from a decibel or two up to 10-12 dB in different conditions, and were generally larger the more cue bands present. Standard CMR conditions, which were run as controls, revealed that the detectability of a tonal signal does not increase as the number of cue bands is increased from one to four-an outcome which differs from those obtained in profile analysis experiments. The data taken with the equal-level and the scrambled-level cues differed little in both the CDD and the CMR conditions. All noise bands were 100 Hz wide, and approximately 250 ms in duration. The signal band in CDD and the masker band in CMR were centered at 2500 Hz. The psychophysical procedure was two-interval forced choice.  相似文献   

4.
Comodulation detection differences (CDDs) were studied using flanking bands that were either gated simultaneously with the signal band (burst) or gated at varying times prior to signal onset (fringed). Used for these experiments were a signal band centered at 1250 Hz and four flanking bands centered at 450, 850, 1650, and 2050 Hz; all bands were 100 Hz wide. In different conditions, the temporal envelope of the signal band was either the same as (correlated), or different from (uncorrelated), the common envelope of the four flanking bands, or the temporal envelopes of all of the bands were different (all-uncorrelated). For 8 of the 13 listeners, signal detectability improved by as much as 25 dB as the temporal fringe of the flanking bands was increased from 5 to about 700 ms. This temporal decline of masking was similar, but not identical, for the correlated, uncorrelated, and all-uncorrelated conditions. Results of this sort are reminiscent of several related findings that have been attributed to auditory adaptation or enhancement, or to a temporally developing critical-band filter. The other 5 of the 13 listeners were generally more sensitive than the majority, and they showed little or no improvement in detectability as fringe duration was varied. Large individual differences of this sort are not uncommon in the adaptation and comodulation literatures. As signal duration was changed from 50 to 240 ms, temporal integration was less in the correlated condition than in the uncorrelated condition, thereby producing a larger CDD with the longer signal. When the fringe followed the observation interval instead of preceding it, the results were equivocal because detectability improved for the majority of subjects and worsened for the minority. In follow-up experiments, different subsets of these four flanking bands were used. When temporal gaps of varying duration were inserted into the flanking band(s) immediately prior to the observation intervals, it was found that a temporal gap as long as 355 ms was not sufficient to reset the mechanisms underlying the temporal decline of masking.  相似文献   

5.
This study investigated comodulation detection differences (CDD) in children (ages 4.8-10.1 years) and adults. The signal was 30-Hz wide band of noise centered on 2 kHz, and the masker consisted of six 30-Hz wide bands of noise spanning center frequencies from 870 to 4160 Hz. The envelopes of the masking bands were always comodulated, and the envelope of the signal was either comodulated or random with respect to the masker. In some conditions, the maskers were gated on prior to the signal in order to minimize effects related to perceptual fusion of the signal and masker. CDD was computed as the difference between signal detection thresholds in conditions where all bands were comodulated and conditions where the envelope of the signal was random with respect to the envelopes of the maskers. Values of CDD were generally small in children compared to adults. In contrast, masking release related to masker/signal onset asynchrony was comparable across age groups. The small CDDs in children are discussed in terms of sensitivity to comodulation as a perceptual fusion cue and informational masking associated with the detection of a signal in a complex background, an effect that is ameliorated by asynchronous onset.  相似文献   

6.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band, an effect called comodulation masking release (CMR). This paper examines CMR as a function of masker bandwidth and time delay between the envelopes of the on-frequency and flanking bands. The 1.0-kHz sinusoidal signal had a duration of 400 ms. The on-frequency band was presented alone (reference condition) or with the flanking band. The flanking-band envelope was either correlated or uncorrelated with that of the on-frequency band. Flanking-band center frequencies ranged from 0.25-2.0 kHz. The flanking band was presented either in the same ear as the on-frequency band (monaural condition) or in the opposite ear (dichotic condition). The noise bands had bandwidths of 6.25, 25, or 100 Hz. In the correlated conditions, the flanking-band envelope was delayed with respect to that of the on-frequency band by 0, 5, 10, or 20 ms. For the 100-Hz bandwidth, CMRs were small (typically less than 1 dB) in both monaural and dichotic conditions at all delay times. For the 25-Hz bandwidth, CMRs were about 3.5 dB for the 0-ms delay, and decreased to about 1.5 dB for the 20-ms delay. For the 6.25-Hz bandwidth, CMRs averaged about 5 dB and were almost independent of delay time. The results suggest that the absolute delay time is not the critical variable determining CMR. The magnitude of CMR appears to depend on the correlation between the envelopes of the on-frequency and flanking bands. However, the results do not support a model of CMR that assumes that signal threshold corresponds to a constant change in across-band envelope correlation when the correlation is transformed to Fisher's z.  相似文献   

7.
In experiment I, thresholds for 400-ms sinusoidal signals were measured in the presence of a continuous 25-Hz-wide noise centered at signal frequencies (fs) ranging from 250 to 8000 Hz in 1-oct steps. The masker was presented either alone or together with a second continuous 25-Hz-wide band of noise (the flanking band) whose envelope was either correlated with that of the on-frequency band or was uncorrelated; its center frequency ranged from 0.5 fs to 1.5 fs. The flanking band was presented either in the same ear (monotic condition) as the signal plus masker or in the opposite ear (dichotic condition). The on-frequency band and the flanking band each had an overall level of 67 dB SPL. The comodulation masking release, CMR (U-C), is defined as the difference between the thresholds for the uncorrelated and correlated conditions. The CMR (U-C) showed two components: a broadly tuned component, occurring at all signal frequencies and all flanking-band frequencies, and occurring for both monotic and dichotic conditions; and a component restricted to the monotic condition and to flanking-band frequencies close to fs. This sharply tuned component was small for low signal frequencies, increased markedly at 2000 and 4000 Hz, and decreased at 8000 Hz. Experiment II showed that the sharply tuned component of the CMR (U-C) was slightly reduced in magnitude when the level of the flanking band was 10 dB above that of the on-frequency band and was markedly reduced when the level was 10 dB below, whereas the broadly tuned component and the dichotic CMR (U-C) were only slightly affected. Experiment III showed that the sharply tuned component of the CMR (U-C) was markedly reduced when the bandwidths of the on-frequency and flanking bands were increased to 100 Hz, while the broadly tuned component and the dichotic CMR (U-C) decreased only slightly. The argument here is that the sharply tuned component of the monotic CMR (U-C) results from beating between the "carrier" frequencies of the two masker bands. This introduces periodic zeros in the masker envelope, which facilitate signal detection. The broadly tuned component, which is probably a "true" CMR, was only about 3 dB.  相似文献   

8.
Detection thresholds were determined for signals consisting of one, two, or five noise bands embedded in eight "cue" bands. All of the noise bands were 100 Hz wide. The center frequencies of the signal bands ranged from 1250-3250 Hz in 500-Hz steps, and those of the cue bands ranged from 500-4000 Hz in 500-Hz steps. The multiple-band signals either all had the same temporal envelope, or all had different temporal envelopes. Similarly, the cue bands either all had the same temporal envelope or all had different temporal envelopes. In separate listening conditions, signal thresholds were determined for various combinations of the temporal envelope patterns of the signal and cue bands. The results were analyzed both in terms of differences in threshold across listening conditions, and in terms of changes in threshold within a listening condition, as the number of signal bands was increased. For both the single- and multiple-band signals, performance was best when the signal band(s) had a different envelope from the common envelope of the cue bands, and performance was worst when either the cue bands all had different envelopes, or the signal and cue bands all shared the same envelope. The thresholds of the multiple-band signals were better fitted by an independent-thresholds model than by a statistical-summation model. However, neither model predicted thresholds uniformly well in all listening conditions. The results are discussed in terms of both "within-channel" and "across-channel" models.  相似文献   

9.
The threshold for a signal masked by a narrow band of noise centered at the signal frequency (the on-frequency band) may be reduced by adding to the masker a second band of noise (the flanking band) whose envelope is correlated with that of the first band. This effect is called comodulation masking release (CMR). These experiments examine two questions. (1) How does the CMR vary with the number and ear of presentation of the flanking band(s)? (2) Is it possible to obtain a CMR when a binaural masking level difference (BMLD) is already present, and vice versa? Thresholds were measured for a 400-ms signal in a continuous 25-Hz-wide noise centered at signal frequencies (fs) of 250, 1000, and 4000 Hz. This masker was presented either alone or with one or more continuous flanking bands whose envelopes were either correlated or uncorrelated with that of the on-frequency band; their frequencies ranged from 0.5fs to 1.5fs. CMRs were measured for six conditions in which the signal, the on-frequency band, and the flanking band(s) were presented in various monaural and binaural combinations. When a single flanking band was used, the CMR was typically around 2-3 dB. The CMR increased to 5-6 dB if an additional flanking band was added. The effect of the additional band was similar whether it was in the same ear as the original band or in the opposite ear. At the lowest signal frequency, a large CMR was observed in addition to a BMLD and vice versa. At the highest signal frequency, the extra release from masking was small. The results are interpreted in terms of the cues producing the CMR and the BMLD.  相似文献   

10.
The detectability of a pure-tone signal masked by a band of noise centered on the signal can be improved by the addition of flanking noise bands, provided that the temporal envelopes of the flanking bands are correlated with that of the on-signal band. This phenomenon is referred to as comodulation masking release (CMR). The present study examined CMR in conditions in which some flanking noise bands were comodulated with the on-signal band, but other flanking bands (termed "deviant" bands) were not. Past research has indicated that CMR is often substantially reduced when deviant bands are present at spectral locations close to the signal frequency. An investigation was undertaken to determine whether the disruptive effects of such bands could be reduced by factors related to auditory grouping. The signal frequency was 100 Hz. In one condition, only 20-Hz-wide comodulated bands, centered on 400, 600, 800, 1000, 1200, 1400, and 1600 Hz, were present. The CMR for this condition, referenced to threshold for the on-signal band only, was approximately 15 dB. In a second condition, two deviant bands were added at 900 and 1100 Hz; their presence reduced the CMR to only 3-4 dB. The number of deviant bands was then increased progressively, from two to eight bands. Deviant bands either shared a common envelope (codeviant), or had unique envelopes (multideviant). The number of bands that were comodulated with the on-signal band was held constant at six.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
These experiments were intended to determine whether comodulation masking release (CMR) occurs for maskers that are modulated in frequency rather than in amplitude. In experiment I, thresholds for a sinusoidal signal were measured in the presence of two continuous sinusoidal maskers: one was centered at the signal frequency (1.0 kHz), and the other was positioned at flanking frequencies ranging from 0.5 to 2.0 kHz. The two maskers were frequency modulated (FM) by the same low-pass-noise modulator (correlated condition) or by independent noise modulators (uncorrelated condition). Thresholds were the same for the correlated and uncorrelated maskers, i.e., no CMR occurred. This was also true when the flanking band was presented in the ear opposite to that containing the signal and the on-frequency masking band. In experiment II, 25-Hz-wide noise maskers were used. The on-frequency band was sinusoidally frequency modulated, while the off-frequency band either had the same FM or no FM. Thresholds were similar for the two conditions, again indicating that no CMR occurred. The results suggest that, unlike amplitude modulation, correlated FM of the masker in different frequency bands does not give rise to a release from masking.  相似文献   

12.
This article presents the results of two experiments investigating performance on a monaural envelope correlation discrimination task. Subjects were asked to discriminate pairs of noise bands that had identical envelopes (referred to as correlated stimuli) from pairs of noise bands that had envelopes which were independent (uncorrelated stimuli). In the first experiment, a number of stimulus parameters were varied: the center frequency of the lower frequency noise band in a pair, f1; the frequency separation between component noise bands; the duration of the stimuli; and the bandwidth of the component noise bands. For a long stimulus duration (500 ms) and a relatively wide bandwidth (100 Hz), subjects could easily discriminate correlated from uncorrelated stimuli for a wide range of frequency separations between the component noise bands. This was true both when f1 was 350 Hz, and when f1 was 2500 Hz. In each case, narrowing the bandwidth to 25 Hz, or shortening the duration to 100 ms, or both, made the task more difficult, but not impossible. In the second experiment, the level of the higher frequency noise band in a pair was varied. Performance did not decrease monotonically as the level of this band was decreased below the level of the other band, and only showed marked impairment when the level of the higher frequency band was at least 60 dB below that of the lower frequency band. The pattern of results in these two experiments is different from that which is obtained when the same stimulus parameters are varied in experiments investigating comodulation masking release (CMR). This suggests that the mechanisms underlying CMR and those underlying the discrimination of envelope correlation are not identical.  相似文献   

13.
The phenomenon of comodulation masking release (CMR) was studied in a series of experiments. When the relative level of the correlated cue band was more than about 10 dB less than that of the masker band, the CMR was abolished. When the duration of the tonal signal was varied with continuous maskers and cues, the course of the standard temporal-integration function (about -10 dB/decade) was followed by both the correlated-cue and the uncorrelated-cue conditions. In a burst masker paradigm employing several burst durations, the data for the correlated-cue condition closely followed the previously determined temporal-integration function. Finally, when the cue band was time delayed more than about 1.6 ms, the CMR began to decline, and it was abolished somewhere between 3 and 15 ms of delay, depending upon the subject. This latter outcome was essentially the same for masker and cue bands of both 75 and 100 Hz in width; in neither instance was there evidence of a cyclic, autocorrelation-like pattern following the period of the envelope. Supplementary experiments revealed two facts: The detectability of a masked narrow-band signal is not improved by the simultaneous presence of a correlated (or uncorrelated) noise band, and a small CMR can be obtained under conditions of forward masking.  相似文献   

14.
A series of four experiments was undertaken to ascertain whether signal threshold in frequency-modulated noise bands is dependent upon the coherence of modulation. The specific goal was to determine whether a masking release could be obtained with frequency modulation (FM), analogous to the comodulation masking release (CMR) phenomenon observed with amplitude modulation (AM). It was hypothesized that an across-frequency grouping process might give rise to such an effect. In experiments 1-3, maskers were composed of three noise bands centered on 1600, 2000, and 2400 Hz; these were either comodulated or noncomodulated with respect to both FM and AM. In experiment 1, the modulation was sinusoidal, and the signal was a 2000-Hz pure tone; in experiment 2, the modulation was random, and the signal was an FM noise band centered on 2000 Hz. The results obtained showed that, given sufficient width of modulation, thresholds were lower in a coherent FM masker than in an incoherent FM masker, regardless of the pattern of AM or signal type. However, thresholds in multiband maskers were usually elevated relative to that in a single-band masker centered on the signal. Experiment 3 demonstrated that coherent FM could be discriminated from incoherent FM. Experiment 4 gave similar patterns of results to the respective conditions of experiments 2 and 3, but for an inharmonic masker with bands centered on 1580, 2000, and 2532 Hz. While within-channel processes could not be entirely excluded from contributing to the present results, the experimental conditions were designed to be minimally conducive to such processes.  相似文献   

15.
This study tested the hypothesis that a detection advantage for gaps in comodulated noise relative to random noise can be demonstrated in conditions of continuous noise and salient envelope fluctuations. Experiment 1 used five 25-Hz-wide bands of Gaussian noise, low-fluctuation noise, and a noise with increased salience of the inherent fluctuations (staccato noise). The bands were centered at 444, 667, 1000, 1500, and 2250 Hz, with the gap signal always inserted in the 1000-Hz band. Results indicated that a gap detection advantage existed in continuous comodulated noise only for Gaussian and staccato noise. Experiment 2 demonstrated that the advantage did not exist for gated presentation. This experiment also showed that the advantage bore some similarity to comodulation masking release. However, differences were also noted in terms of the effects of the number of flanking bands and the absence of a detection advantage in gated conditions. The detrimental effect of a gated flanking band was less pronounced for a comodulated band than for a random band. This study indicates that, under some conditions, a detection advantage for gaps carried by a narrow band of noise can occur in the presence of comodulated flanking bands of noise.  相似文献   

16.
Two masking-release paradigms thought to involve across-channel processing are comodulation masking release (CMR) and profile analysis. Similarities between these two paradigms were explored by comparing signal detection in maskers that varied only in degree of envelope fluctuation. The narrow-band-noise maskers were 10 Hz wide and their envelope fluctuations were manipulated using the low-noise noise algorithm of Pumplin [J. Acoust. Soc. Am. 78, 100-104 (1985)]. Masking conditions included the classic CMR conditions of an on-frequency band, multiple (five) incoherent bands, or multiple coherent bands. Detection was compared using both random-phase noise (RPN) and low-noise noise (LNN) maskers. In one set of conditions, the signal was identical to the on-frequency masker, yielding an intensity discrimination task. Conditions that included RPN maskers and tonal signals resembled the classic CMR paradigm, whereas conditions including LNN and noise signals more closely resembled the classic profile analysis paradigm. Other conditions may be considered hybrids. This combination of conditions provided a wide variety of within- and across-channel cues for detection. The results suggest that CMR and profile analysis could be based upon the same set of stimulus cues and perhaps the same perceptual processes.  相似文献   

17.
Signal detection was determined in conditions where the masker was a 10-Hz-wide noise band centered on the signal, and in conditions where either a comodulated or noncomodulated noise band (centered at 0.8 times the signal frequency) was also present. Signal frequencies of 500 or 2000 Hz were investigated. In one condition of the first experiment, the signal was exactly the same 10-Hz-wide noise band as the masker, added to the masker in phase. This condition was designed to limit the availability of cues based upon dip listening, suppression, beating, or across-frequency differences in noise envelope correlation, but to afford a cue based upon across-frequency envelope amplitude difference. The narrow-band noise signal resulted in approximately the same magnitude of comodulated masking release (CMR) as was found for a pure-tone signal. This result suggested that one important cue for CMR is an across-frequency difference in envelope amplitude. Stimulus conditions in the second experiment were intended to disrupt cues of across-frequency envelope amplitude difference, but to afford cues based upon across-frequency differences in noise envelope correlation. In this experiment, cues based upon envelope amplitude were impoverished by randomly varying the level of the flanking band from interval to interval, and by adjusting the level in the on-signal band to be the same in the nonsignal intervals as the level of noise plus signal in the signal interval. Again, substantial CMRs occurred, suggesting that another cue for CMR may be envelope pattern or correlation. The results of these experiments indicated that CMR is probably based upon more than one stimulus variable.  相似文献   

18.
Comodulation masking release (CMR) refers to an improvement in the detection threshold of a signal masked by noise with coherent amplitude fluctuation across frequency, as compared to noise without the envelope coherence. The present study tested whether such an advantage for signal detection would facilitate the identification of speech phonemes. Consonant identification of bandpass speech was measured under the following three masker conditions: (1) a single band of noise in the speech band ("on-frequency" masker); (2) two bands of noise, one in the on-frequency band and the other in the "flanking band," with coherence of temporal envelope fluctuation between the two bands (comodulation); and (3) two bands of noise (on-frequency band and flanking band), without the coherence of the envelopes (noncomodulation). A pilot experiment with a small number of consonant tokens was followed by the main experiment with 12 consonants and the following masking conditions: three frequency locations of the flanking band and two masker levels. Results showed that in all conditions, the comodulation condition provided higher identification scores than the noncomodulation condition, and the difference in score was 3.5% on average. No significant difference was observed between the on-frequency only condition and the comodulation condition, i.e., an "unmasking" effect by the addition of a comodulated flaking band was not observed. The positive effect of CMR on consonant recognition found in the present study endorses a "cued-listening" theory, rather than an envelope correlation theory, as a basis of CMR in a suprathreshold task.  相似文献   

19.
These experiments examine how comodulation masking release (CMR) varies with masker bandwidth, modulator bandwidth, and signal duration. In experiment 1, thresholds were measured for a 400-ms, 2000-Hz signal masked by continuous noise varying in bandwidth from 50-3200 Hz in 1-oct steps. In one condition, using random noise maskers, thresholds increased with increasing bandwidth up to 400 Hz and then remained approximately constant. In another set of conditions, the masker was multiplied (amplitude modulated) by a low-pass noise (bandwidth varied from 12.5-400 Hz in 1-oct steps). This produced correlated envelope fluctuations across frequency. Thresholds were generally lower than for random noise maskers with the same bandwidth. For maskers less than one critical band wide, the release from masking was largest (about 5 dB) for maskers with low rates of modulation (12.5-Hz-wide low-pass modulator). It is argued that this release from masking is not a "true" CMR but results from a within-channel cue. For broadband maskers (greater than 400 Hz), the release from masking increased with increasing masker bandwidth and decreasing modulator bandwidth, reaching an asymptote of 12 dB for a masker bandwidth of 800 Hz and a modulator bandwidth of 50 Hz. Most of this release from masking can be attributed to a CMR. In experiment 2, the modulator bandwidth was fixed at 12.5 Hz and the signal duration was varied. For masker bandwidths greater than 400 Hz, the CMR decreased from 12 to 5 dB as the signal duration was decreased from 400 to 25 ms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human observers were asked to judge whether or not two sequences of eight or more tones had the same serial pattern of frequencies. The temporal envelopes of the sequences were manipulated by randomly varying the tone durations or intertone gaps. In the correlated condition, the temporal envelopes of the sequences were varied across trials; the two sequences within each trial had the same temporal envelope. In the uncorrelated condition, the temporal envelopes were varied both across and within trials; every sequence had a unique temporal pattern. Performance in the uncorrelated condition decreased with increased variability in the temporal envelope. Performance in the correlated condition was independent of temporal variability, but decreased with increases in the time interval between the onsets of the two sequences. This pattern of results is consistent with an extension of a model of auditory discrimination developed by Durlach and Braida [J. Acoust. Soc. Am. 46, 372-383 (1969)], in which two processing modes are postulated: a trace mode and a context mode. When the tonal sequences had unique temporal patterns, context mode processing was dominant; when the sequences had identical temporal patterns, trace mode processing was preferred. The effect of variables such as the number of tones, the tone duration, the time gap between tones, and the time interval between sequences was consistent with the predictions of the discrimination model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号