首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Chemphyschem》2003,4(10):1065-1072
Dielectric spectra have been measured for aqueous sodium dodecylsulfate (SDS) solutions up to 0.1 mol L?1 at 25 °C over the frequency range 0.005≤ν GHz?1≤89. The spectra exhibit two relaxation processes at approximately 0.03 GHz and 0.2 GHz associated with the presence of micelles in addition to the dominant solvent relaxation process at approximately 18 GHz and a small contribution at approximately 1.8 GHz due to H2O molecules hydrating the micelles. Detailed analysis reveals that the micelles bind 20 water molecules per SDS unit, but not as strongly as trimethylalkylammonium halide surfactants do. The relaxation times and amplitudes of both micelle relaxation processes can be simultaneously analysed with the theory of Grosse, yielding the effective volume of a SDS unit in the micelle and the lateral diffusion coefficient of the bound counterions. The findings of this investigation fully corroborate recent molecular dynamics simulations on structure and dynamics of SDS micelles.  相似文献   

3.
Broadband dielectric measurements for blends of poly(vinyl pyrrolidone) (PVP) and ethylene glycol oligomer (EGO) from 0 to 40 wt % PVP were carried out at 25 degrees C in the frequency range from 20 Hz to 20 GHz. The EGOs used in this study were ethylene glycol (EG), diethylene glycol (2EG), and PEG400 (MW = 400). For the PVP-EG, -2EG, and -PEG400 blends, relaxation processes caused by the motion of EGO in the GHz range and the micro-Brownian motion of the PVP chain at 10 kHz-1 MHz were observed. Although the PVP-EGO blend is miscible, relaxation processes caused by the molecular motion of EGO and the local chain motion of PVP were observed individually. The relaxation time of the local chain motion of PVP showed a strong PVP concentration dependence and a solvent viscosity dependence, which are similar to those reported so far for the solutions in nonpolar solvents.  相似文献   

4.
A systematic study of the dielectric relaxation spectra of aqueous solutions of NaBPh4 and Ph4PCl has been made at solute concentrations of 0.02 < or = c/M < or = 0.82 and 0.20, respectively, and over a wide range of frequencies (0.2 < or = nu/GHz < or = 89) at 25 degrees C. The spectra were best described by a superposition of four Debye processes, consisting of a very small ion-pair contribution with an average relaxation time of about 300 ps, a "slow"-water relaxation at 17 ps, and two bulk-water relaxations at 8 ps and 0.25 ps, respectively. The slow-water process has been assigned to the presence of a sheath of water molecules surrounding BPh4- and Ph4P+, whose structure has been enhanced by its proximity to the bulky hydrophobic phenyl rings. A structure-making effect on the remaining solvent water can also be observed at low concentrations. More importantly, BPh4- and Ph4P+ show almost identical hydration characteristics, which provides indirect support for the use of the tetraphenylphosphonium tetraphenylborate reference electrolyte assumption in deriving single-ion thermodynamic properties.  相似文献   

5.
The complex permittivities of aqueous SDS solutions, with and without the addition of sodium chloride (NaCl), are measured in the frequency range from 200 MHz to 14 GHz. The SDS concentrations are chosen such that the SDS molecules aggregate to micelles. In this frequency range, the measured spectra allow for the identification of two different relaxation processes. That is, the relaxation of the water molecules at frequencies above 1 GHz and the micellar relaxation at frequencies lower than 1 GHz. It is found that the addition of NaCl to the system mostly affects the micellar relaxation process. In detail, the time constant as well as the amplitude of the relaxation decrease by adding NaCl. These effects are attributed to the change in the solution conductivity that changes the properties of the micelle's electrical double layer. We also extract the Dukhin number of the micelles as a function of surfactant and electrolyte content from the measurements. The Dukhin number is a dimensionless group that describes the influence of the surface conductivity on a phenomena. A regression between Dukhin numbers and free sodium ions is found so that all data collapses on a single curve independent of the surfactant concentration. The surface conductivity is a manifestation of the electrical double layer and we use the Bikerman equation to infer the zeta potential of the micelles. Comparison to literature data shows very good agreement and proves that dielectric relaxation spectroscopy can be engaged to infer the zeta potential of micelles. Abbreviations: CMC critical micelle concentration, DRS dielectric relaxation spectroscopy, EDL electrical double layer  相似文献   

6.
Phosphinoyl radicals were produced in benzene solution by photolysis of three acylphosphine oxide photoinitiators, diphenyl-2,4,6-trimethylbenzoyl phosphine oxide (I), bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide (II), and bis(2,4,6-trimethylbenzoyl) phenylphospine oxide (III). The chemically induced dynamic electron polarization (CIDEP) of the radicals was measured by time-resolved electron paramagnetic resonance spectroscopy at different microwave frequencies/magnetic fields, in S- (2.8 GHz, 0.1 T), X- (9.7 GHz, 0.34 T), Q- (34.8 GHz, 1.2 T), and W-bands (95 GHz, 3.4 T). The CIDEP was found to be due to a triplet mechanism (TM) superimposed by a radical pair mechanism comprising ST(0) as well as ST(-) mixing. Contributions of the different CIDEP mechanisms were separated, and the dependence of the TM polarization on microwave frequency was determined. It agrees well with the numerical solution of the relevant stochastic Liouville equation, which proves the TM theory quantitatively. The applicability of previous approximate analytical formulas for the TM polarization is discussed. Parameters of the excited triplet state of III were estimated from the dependence of the TM polarization on microwave frequency. They are zero-field splitting constant 0.169 cm(-1) 相似文献   

7.
8.
Acoustical attenuation spectra between 10 kHz and 2 GHz, complex dielectric spectra between 300 kHz and 40 GHz, and time-resolved non-equilibrium measurements are reported for aqueous solutions of various mono- and disaccharides with and without 2:1 valent salts. The spectra reveal a variety of relaxation regimes with relaxation times between 1 micros and 10 ps. In addition, the time-resolved observations enable the study of the mutarotation with relaxation times on the order of 10(3) s. Variation of the concentration and temperature as well as a careful choice of the saccharides allow a discussion of the relaxation processes in terms of a chair-chair ring inversion, two modes of pseudorotation, an exocyclic hydroxymethyl group rotation, a carbohydrate-carbohydrate association, and, in the disaccharide solutions, a rotation of the rings relative to another. Salt-containing solutions show also relaxation phenomena reflecting different steps cation-carbohydrate association and variations in the carbohydrate conformational isomerizations and associations due to interactions with cations.  相似文献   

9.
Abstract— We used frequency-domain fluorescence spectroscopy to measure rotational diffusion and time-resolved emission spectra of indole in methanol on the picosecond timescale. The indole emission was quenched by acrylamide to allow measurements to the instrumental limit of 2 GHz and to eliminate emission from the longer-lived indole molecules, which can no longer provide information on the picosecond (ps) processes. The resolution was adequate to measure rotational correlation times as short as 8 ps at 80†C, and spectral relaxation times as short as 16 ps at 5†C.  相似文献   

10.
Permittivity data from 0.9 to 40 GHz for acetonitrile and 0.05 to 1.4 molar acetonitrile solutions of Bu4NBr at 25°C are used to exemplify the behavior of ion pairs in high frequency electric fields. Measurements were excuted by the method of travelling waves with equipment known to produce data of high precision. Data analysis of the acetonitrile spectrum shows a single relaxation process at relaxation time of 3.5 ps for the solvent reorientation; the spectra of the salt solutions reveal two relaxation processes with relaxation times increasing from 3.5 to 6.8 ps for the solvent and decreasing from 120 to 70 ps for the ion pair [Bu4NBr]o at increasing salt concentration. The association constant of Bu4NBr in acetonitrile determined by permittivity measurements agrees well with that from conductance measurements. The concentration-dependence of the ion-pair relaxation times reveals the rate constants of ion-pair formation and decomposition.Presented at the Symposium on Electrochemistry and Spectroscopy of Solutions, Honoring Johannes Coetzee, University of Pittsburgh, November 30, 1989.  相似文献   

11.
Permittivity data at frequencies from 0.9 to 12 GHz for propylene carbonate and for the solutions of NaI, NaClO4, Bu4NI, Bu4NClO4, ZnBr2, and Ca(ClO4)2 in propylene carbonate at 25°C are reported and discussed. The contaminating influence of water on the dielectric spectra is shown. Measurements were executed by the method of travelling waves with equipment known to produce data of high precision. Evaluation of the data is performed on the basis of models presupposing one or more relaxation regions. The dielectric spectra of all salts with the exception of ZnBr2 yield relaxation time distributions with a single critical relaxation time or can be analyzed by assuming two critical relaxation times for the solvent. ZnBr2 solutions show a supplementary relaxation region at low frequencies which is attributed to the solute. The variation of permittivities at zero frequency with the salt concentration is discussed in the framework of kinetic depolarization. Solvation numbers are estimated.  相似文献   

12.
Dielectric-relaxation studies in the frequency range 200 kHz to 35 GHz are reported for a range of sugars (from mono- to trisaccharides) in aqueous solution. The complex dielectric spectra were analyzed using a weighted least-squares minimization method to resolve the various component relaxations, and the implications of the analyses in terms of the molecular dynamics of solute and solvent and the interactions between solute and solvent are discussed. For the highest concentration studied (ca. 2M), it was found that the most significant analysis required three discrete relaxation processes, whereas lower concentration samples could usually be satisfactorily fitted with two. Irrespective of any uncertainty in model selection, a number of conclusions regarding the solute-solvent interactions can be made, and it is shown how final quantification of the extents of hydration can be made using the input of information from other techniques.  相似文献   

13.
A systematic study of the dielectric relaxation spectra of aqueous solutions of NaBr, NaI, NaNO(3), NaClO(4), and NaSCN has been made over a wide range of frequencies (0.2 < or = nu/GHz < or = 89) and solute concentrations (0.05 < or = c/M < or = 1.5) at 25 degrees C. The spectra could be adequately described by a single Cole-Cole (CC) process, symmetrically broadened relative to that of pure water. However, similar quality fits were also obtained with a three-Debye-process (3D) model consisting of a small ion-pair contribution at lower frequencies and two solvent relaxations at higher frequencies. Assuming the ions to be solvent separated, the 3D model provided estimates of their association constants and their rate constants for formation and dissociation. The bulk water relaxation times obtained from both models showed almost no dependence on the nature of the anion. Nevertheless, there were subtle differences in the concentration dependences of the relaxation times which correlated with some, but not all, of the anion properties that are believed to be relevant for explaining the anionic Hofmeister series.  相似文献   

14.
The reorientational dynamics of dipoles in a series of blends of Polyethylene Glycol (PEG) and poly(amidoamine) (PAMAM) dendrimers were investigated by broadband dielectric relaxation spectroscopy (DRS). Measurements were performed over a wide range of frequency and temperature. Neat PEG exhibits three relaxation processes: the segmental process in the amorphous phase and two faster processes due to the localized motions in the amorphous regions and the rotation of hydroxyl end groups. Addition of dendrimers to the PEG matrix slows down the segmental process in the amorphous phase, but has no effect on the relaxation time of local processes in PEG. However, H-bonding which forms between the PEG oxygen and the amino groups on dendrimer surface is responsible for a shift of local processes in dendrimers to lower frequency. A detail analysis of the effect of temperature, concentration of dendrimers and molecular weight of PEG on the relaxation dynamics is offered.  相似文献   

15.
A systematic study of the dielectric relaxation spectra of aqueous solutions of LiCl and Li2SO4 has been made at solute concentrations of 0.05 < or = c/M < or = 1.0 and 2.0, respectively, and over a wide range of frequencies (0.2 < or = nu/GHz < or = 89) at 25 degrees C. The spectra were best described by a superposition of four Debye processes, consisting of the two well-known water relaxations at ca. 8 and 0.5 ps and two ion-pair contributions at ca. 200 and 20 ps, corresponding to the presence of double-solvent-separated (2SIP) and solvent-shared (SIP) ion pairs, respectively. Consistent with spectroscopic studies, no contact ion pairs were detected over the studied concentration range. The overall ion association constants K(o)(A) obtained were in good agreement with literature data for both salts. Detailed analysis of the solvent relaxations indicated that Li+ has a significant second solvation sheath although there were differences between the effective hydration numbers obtained from LiCl and Li2SO4, which might arise from competition for the solvent from the anions.  相似文献   

16.
The dielectric spectra of propylene glycol over the frequency and temperature ranges 10 mHz–75 GHz and 175–423 K, respectively, were analyzed using the Dissado-Hill cluster model. A correlation between relaxation processes of breaking and formation of intermolecular H-bonds in clusters was obtained. A correlation of fluctuation processes of synchronous exchange of molecules between neighboring clusters corresponded to the redistribution of H-bonds between them. The Dissado-Hill theory was used to determine the integral relaxation times, n DH and m DH parameters and calculate the mean dipole moments of propylene glycol clusters and the energy characteristics of processes of their rearrangement. The mean dipole moments of clusters (23617–18.65 D) were compared with those of molecules in the liquid phase (3.67–3.03 D). The apparent activation enthalpy of processes of cluster rearrangements decreased from 141.8 to 25.2 kJ/mol, the activation energy decreased from 46.03 to 18.47 kJ/mol, and the energy of orientation dipole-dipole interactions, from 3.78 to 3.45 kJ/mol as the temperature increased.  相似文献   

17.
Dielectric spectra of H2O and D2O molecules in the Lα liquid crystalline phase of nonylphenoxy-poly(ethylenoxy)ethanol(Ark. 9)/water lyotropic systems have been investigated by dielectric time domain spectroscopy in the frequency range from 10 MHz to 10 GHz. By fitting the Cole-Cole formula to the dielectric spectra, obtained at different temperatures the dielectric increments, the relaxation times and the distribution parameters have been calculated. A strong retardation of water molecules has been found for the lamellar phase with low water content, i.e. 10 water molecules (H2O or D2O) per one Ark. 9 molecule. The relaxation times obtained at room temperature for the light and heavy water are 63 and 93 ps, respectively. It means that the retardation factor for D2O molecules in the Lα phase is close to 1.5 and higher than that found for pure heavy water (1.25). Any decomposition of the dielectric spectra obtained seems to be unsubstantiated. The temperature dependences of the relaxation times acquired for both kinds of water obey the Arrhenius behaviour.  相似文献   

18.
Interactions and dynamics in ionic liquids   总被引:1,自引:0,他引:1  
Precise dielectric spectra have been determined at 25 degrees C over the exceptionally broad frequency range of 0.1 相似文献   

19.
The dielectric constant for lithium chloride (LiCl) in aqueous solution with the entire concentration has been determined in the frequency range 0.5 GHz–50GHz at 298 K by dielectric relaxation spectroscopy (DRS). The system behaviour is described according to the Cole–Cole and two Debye-type relaxation functions whose evolution with composition is analysed. Combining the Cole–Cole and two Debye-type relaxation functions, the results of the dielectric properties of aqueous LiCl solution are presented and discussed. The maximum number of water molecules perturbed by ions in the hydration shell decays with its concentration. Using the extended Froehlich theory, it is concluded that the water structure is perturbed by ions beyond the first hydration shell in LiCl aqueous solution system.  相似文献   

20.
Dielectric spectra have been measured at 25 degrees C for mixtures of the room temperature ionic liquid 1- N-butyl-3- N-methylimidazolium tetrafluoroborate (IL) with dichloromethane (DCM) over the entire composition range at frequencies 0.2 less than or approximately nu/GHz < or = 89. The spectra could be satisfactorily fitted by assuming only two relaxation modes: a Cole-Cole process at lower frequencies and a Debye process at higher frequencies. However, detailed analysis indicated that both spectral features contain additional modes, which could not be resolved due to overlaps. The spectra indicate that the IL appears to retain its chemical character to extraordinarily high levels of dilution ( x IL greater than or approximately 0.5) in DCM. At even higher dilutions ( x IL less than or approximately 0.3), the IL behaves as a conventional but strongly associated electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号