首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

2.
Gold nanoparticles (Au NPs) were prepared and surface-modified by mercaptosuccinic acid (MSA) to render a surface with carboxylic acid groups (MSA-Au). Octadecylamine (ODA) was used as a template monolayer to adsorb the Au NPs dispersed in the subphase. The effect of MSA concentration on the incorporation of Au NPs on the ODA monolayer and the relevant behavior of the mixed monolayer were studied using the pressure-area (pi-A) isotherm and transmission electron microscopy (TEM) observations. The experimental results showed that the adsorbed density of Au NPs is low without the surface modification by MSA. When MSA was added into the Au NP-containing subphase, the incorporation amount of Au NPs increased with increasing MSA concentration up to approximately 1 x 10-5 M for the particle density of 1.3 x 1011 particles/mL. With a further increase in the MSA concentration, the adsorbed particle density decreases due to competitive adsorption between the free MSA molecules and the MSA-Au NPs. It is inferred that free MSA molecules adsorb more easily than the MSA-Au NPs on the ODA monolayer. Therefore, an excess amount of MSA present in the subphase is detrimental to the incorporation of gold particles. The study on the monolayer behavior also shows that the pi-A isotherm of the ODA monolayer shifts right when small amounts of Au NPs or free MSA molecules are incorporated. However, when larger amounts of particles are adsorbed at the air/liquid interface, a left shift of the pi-A isotherm appears, probably due to the adsorption of ODA molecules onto the particle surface and the transferring of the particles from beneath the ODA monolayer to the air/water interface. According to the present method, it is possible to prepare uniform particulate films of controlled densities by controlling the particle concentration in the subphase, the MSA concentration, and the surface pressure of a mixed monolayer.  相似文献   

3.
Quartz crystal microbalance(QCM) and cyclic voltammetry(CV) were used to characterize the monolayer of cytochrome c(Cyt c), which was adsorbed on gold film modified with alkanethiol mixed monolayer. A direct comparison of protein surface coverages calculated from QCM and cyclic voltammetric measurements illustrates that the ratio of the electroactive Cyt c to the total surface-confined Cyt cis 34%, which suggests that the orientation is a main factor affecting the electroactivity of Cyt c. Moreover, surface plasmon resonance(SPR) measurement combined with CV “in situ” was used to investigate the conformational change of Cyt c in the redox process. Besides, Au nanoparticles(Au NPs) were adsorbed on the surface of Cyt c. The result indicates that Au NPs promote electron transfer between Cyt c and the gold electrode, and SPR result suggests Au NPs enhance SPR signal.  相似文献   

4.
This work is focused on the synthesis of innovative hybrids made by linking gold nanoparticles to protected organometallic Pd(II) thiolate. The organometallic protected Pd(II) thiolate, i.e. trans-thioacetate-ethynylphenyl-bis(tributylphosphine)palladium(II) has been synthesized, in situ deprotected and linked to Au nanoparticles. In this way new hybrid, with a direct link between Pd(II) and Au nanoparticles through a single S bridge, has been isolated. The combination of the organometallic Pd(II) thiol with gold nanoparticles allows the enhancement and tailoring of electronic and optical properties of the new organic-inorganic nano-compound. Single-crystal gold nanoparticles, uniform in shape and size were obtained by applying a modified two-phase method (improved Brust-Schiffrin reaction). In addition, the chemical environment of the Au nanoparticles was investigated and a covalent bonding between Au nanoparticles and the organometallic thiols was observed.  相似文献   

5.
This paper presents a way of modification of crystalline gold surface with a high quality layer of gold nanoparticles (Au NPs) via self‐assembled dithiol. The application of additional Au NPs monolayer prepared at various temperatures was tested with three types of biosensors previously described in the literature. The examined DNA biosensors differed by the detection method and the way of the immobilization of DNA probe at the modified gold electrode surface. For the immobilization of DNA probe in the sensing layer either the formation of SAM or the affinity binding (biotin – sterptavidin) or covalent attachment were used. The necessary condition of successful preparation of a perfect such monolayer is the preparation temperature of 4 °C. The preparation of Au NPs layers at higher than 4 °C temperatures leads to poor repeatability and unsatisfactory precision of the measurements. The application of the perfect Au monolayer lowers the detection limit (circa by 10 to 100 times) for all tested DNA biosensors.  相似文献   

6.
Here we describe a very efficient method to produce well-defined amphiphilic gold nanoparticles (Au NPs) with an equal number of hydrophobic and hydrophilic arms which are distributed along the surface of a 2-nm gold core in an alternating fashion. The strategy involves direct coupling of V-shaped block copolymer amphiphile 2 with a carboxylic group at its junction point to mercaptophenol-terminated Au NPs. The reaction proceeds under mild esterification conditions and yields the product with a molecular weight of 40 kDa, high grafting density (2.9 chains/nm2), and extremely low polydispersity (1.07). The big advantage of this approach is the opportunity to avoid the use of expensive and often inaccessible polymeric thiols. The method described here is applicable to any carboxyl-terminated molecules and can be used for the preparation of complex, yet well-defined, macromolecular hybrid structures such as 1 (Au(PB-PEG)n). The new product, which was characterized by a combination of SEC, NMR, UV-vis, DLS, and TEM, represents a unique example of gold nanoparticles soluble in any conventional solvent.  相似文献   

7.
Gold nanoparticle (NP) mono- and multilayers were constructed on gold surfaces using coordination chemistry. Hydrophilic Au NPs (6.4 nm average core diameter), capped with a monolayer of 6-mercaptohexanol, were modified by partial substitution of bishydroxamic acid disulfide ligand molecules into their capping layer. A monolayer of the ligand-modified Au NPs was assembled via coordination with Zr4+ ions onto a semitransparent Au substrate (15 nm Au, evaporated on silanized glass and annealed) precoated with a self-assembled monolayer of the bishydroxamate disulfide ligand. Layer-by-layer construction of NP multilayers was achieved by alternate binding of Zr4+ ions and ligand-modified NPs onto the first NP layer. Characterization by atomic force microscopy (AFM), ellipsometry, wettability, transmission UV-vis spectroscopy, and cross-sectional transmission electron microscopy showed regular growth of NP layers, with a similar NP density in successive layers and gradually increased roughness. The use of coordination chemistry enables convenient step-by-step assembly of different ligand-possessing components to obtain elaborate structures. This is demonstrated by introducing nanometer-scale vertical spacing between a NP layer and the gold surface, using a coordination-based organic multilayer. Electrical characterization of the NP films was carried out using conductive AFM, emphasizing the barrier properties of the organic spacer multilayer. The results exhibit the potential of coordination self-assembly in achieving highly controlled composite nanostructures comprising molecules, NPs, and other ligand-derivatized components.  相似文献   

8.
In this paper, we exploited a unique procedure for obtaining thorny gold nanoparticles (Au NPs) with controllable length of thorns without using seeds and surfactants. The obtained Au NPs exhibited shape-determined surface-enhanced Raman spectroscopy activity toward rhodamine 6G.  相似文献   

9.
A protocol is reported for the preparation of water-soluble, thiol-protected Au nanoparticles (Au-MPC) where dioctylamine is used as a stabilizing agent when the gold cluster is formed using the two-phase Brust and Schiffrin procedure. The amount of amine controls the size of the nanoparticles in the 1.9-8.9 nm diameter range. The final stabilization of the gold clusters by addition of functionalized thiols is performed under very mild conditions compatible with most biomolecules. The procedure is suitable for a wide variety of functional groups present in the thiol and allows one to use thiol mixtures with a precise control of their composition in the monolayer. As a proof of principle, examples of nanoparticles protected with thiols comprising functional groups ranging from polyethers, saccharides, polyamines and ammonium ions are reported.  相似文献   

10.
The synthesis and characterization of the first air-stable tellurium-containing ligand-protected gold nanoparticles (NPs) are reported. Although the synthesis largely followed the well-known Brust two-phase approach, the starting ligand was dioctyl ditelluride rather than alkanetellurol, which is an analogue of the widely used alkanethiol. Dioctyl ditelluride was used because alkanetellurol is unstable. The 1H and 13C NMR spectra, as well as infrared spectra (IR) of the formed Au NPs, indicated that the Te-Te bond in the starting ligand was broken but the octyl group was intact. This was further corroborated by the solid-state 125Te NMR spectrum that displayed a very broad and significantly downfield-shifted peak, indicating that tellurium was directly bound to the Au core. Furthermore, the O 1s and Te 3d XPS spectra of the Au NPs indicated that the capping ligands were octanetelluroxide. An average particle size of 2.7 nm diameter as measured by transmission electron microscopy (TEM) corresponded to an Au607 core. A two-step weight loss of approximately 22.2% in total was observed in the thermogravimetric analysis, which indicated about 53% ligand monolayer coverage (i.e., Au607(Te(=O)C8H17)133). Additionally, dioctyl ditelluride demonstrated an intriguing reductive power that led to a more sophisticated chemistry of forming the air-stable octanetelluroxide-protected gold NPs. It has been found that (1) when the ratio of Au to Te was about 1.5 a colorless intermediate state similar to Au(I)-SR (the intermediate state widely accepted in the synthesis of thiolate-protected Au NPs) could be obtained and (2) this kind of intermediate state played a key role in the formation of stable Au NPs.  相似文献   

11.
Electrostatically bonded SiO2.Au nanoparticle clusters form by reaction of 3-aminopropylsilane-modified SiO2 spheres (470 nm) with citrate-coated gold nanoparticles (9.7 nm) in water. Reaction of the clusters with 0.01 M KBr or HCl solution induces desorption of the gold nanoparticles within minutes. Reaction of the clusters with alkanethiols CnH2n+1SH (n = 2-18) at 80 degrees C causes the gold nanoparticles to form stringlike gold nanoparticle structures for thiols with short alkane groups (n = 2, 3, 4) and hexagonally packed arrays of gold nanoparticles for thiols with long alkane groups (n = 5-18) on the silica surfaces. The structural changes indicate that the bonding between Au and SiO2 nanoparticles has changed from electrostatic to van der Waals. Elemental analyses show that the reaction with hexanethiol does not affect the Au/Si/O composition of the SiO2.Au cluster, and Raman spectra on the hexanethiol-reacted cluster indicate the formation of a thiol SAM on the gold nanoparticles. The thiol-reacted SiO2.Au clusters display characteristic shifts of the absorption maxima in the visible spectra, and there is an inverse relation between these shifts and the lengths of the alkyl groups in the thiols. This relationship can be understood in terms of the free electron model for metals. The use of SiO2.Au nanoparticle clusters as coulometric sensors for the qualitative detection of thiols is discussed.  相似文献   

12.
We report a simple method for preparing three different SERS-active substrates. Concentrated hydrazine solution as the reducing agent and tellurium dioxide as the precursor were used to prepare Te nanowires (NWs). The as-prepared Te NWs have an average length of 547.7 +/- 111.6 nm and an average width of 15.1 +/- 2.7 nm. Through the reaction of Te NWs with sodium tetrachloroaurate in the presence of hexadecyltrimethylammonium bromide (CTAB) over reaction times of 10, 20, and 60 min, gold-tellurium nanodumbbells, gold-tellurium nanopeapods, and gold pearl-necklace nanomaterials (Au PNNs) were obtained, respectively. By controlling the reaction time, the distance between adjacent gold nanoparticles (Au NPs) in each Te nanowire was tunable, allowing us to investigate its effect on the SERS signals. Having shorter distances among Au NPs (greater electromagnetic fields), the Au PNNs provided a reproducible enhancement factor of 5.6 x 10(9).  相似文献   

13.
A novel strategy of dual steric hindrance, which was obtained by Janus modification of gold nanoparticles (Au NPs) and volume exclusion of DNA, was adopted to prepare mono-DNA-modified Au NPs. The yield of mono-DNA-functionalized Au NPs significantly improved from 44 to 70% in the reaction between Au NPs and thiolated DNA. Furthermore, the specificity of mono-DNA-functionalized Au NPs was enhanced from 57 to 95%. The as-prepared Au NPs without postsynthetic treatment showed good controllability in self-assembly fabrication of complex nanostructures.  相似文献   

14.
The immobilization of gold nanoparticles (Au NPs) on silica is made possible by the functionalization of the silica surfaces with organosilanes. Au NPs could only be stabilized and firmly attached to silica-support surfaces that were previously modified with amino groups. Au NPs could not be stabilized on bare silica surfaces and most of the NPs were then found in the solution. The metal-support interactions before and after the Au NP formation, observed by X-ray absorption fine structure spectroscopy (XAFS), indicate a stronger interaction of gold(III) ions with amino-modified silica surfaces than with the silanol groups in bare silica. An amino-modified, silica-based, magnetic support was used to prepare an active Au NP catalyst for the chemoselective oxidation of alcohols, a reaction of great interest for the fine chemical industry.  相似文献   

15.
A protocol for selectively oxidizing aldehyde over hydroxymethyl group is developed, using biomass starch protected gold nanoparticles (NPs) as catalyst. The Au NPs show high selectivity that aldehyde is oxidized into carboxylic acid while alcoholic hydroxyl group stays intact in selective oxidation of 4-(hydroxymethyl)-benzaldehyde. The heterogeneous catalysis system is composed of soluble catalysts and insoluble substrate. The gold catalyst is prepared, preserved and applied for catalytic oxidation all in water. After reaction conditions are optimized, H\begin{document}$_2$\end{document}O\begin{document}$_2$\end{document} is found to be the best oxidizing agent with complete conversion. Besides, the gold catalyst displays good versitility for aldehyde derivatives. After reaction completes, organic components are extracted by organic solvent and gold NPs in water are separated and recycled.  相似文献   

16.
Natural carbohydrate polymer β-d-glucan extracted from Tricholoma crassum (Berk.) Sacc. predominantly linked by β-glycosidic bonds have been used to synthesize gold nanoparticles (Au NPs). As glucan is water soluble, the Au NPs are prepared in water medium, a green solvent. The morphology and characterization of the synthesized Au NPs have been confirmed by various techniques, like TEM, EDX, XRD, UV–Vis and FT-IR spectroscopic studies. The obtained Au NPs exhibits chemosensing property against Methyl Parathion, a group of highly toxic organophosphorous pesticide, extensively used as an agricultural chemical. Degradation of parathion using Au NPs lead to water-soluble products thereby reducing the toxicity of Methyl Parathion by disrupting the thiophosphate-ester linkage. The synthesized Au NPs also act as a good fluorescence quencher of Rhodamine B, a common fluorophore and carcinogenic compound, obeying Stern-Volmer equations. The β-d-glucan capped Au NPs are safe having possible medicinal usage.  相似文献   

17.
Two syntheses of gold nanoparticles with fluorinated alkyl and aryl thiolate ligands are reported. The fluorous Au nanoparticles are smaller than previous gold fluor-capped examples, and are in the 44-75 Au atom size range. Fluoroalkyl thiolate-protected (1H,1H,2H,2H-perfluorodecanethiolate) nanoparticles synthesized by a Brust reaction are a mixture of (mainly) approximately 8.5 kDa (ca. 44 core atoms) and approximately 14 kDa (ca. 75 core atoms) species, by MALDI-mass spectrometry. This composition is consistent with thermogravimetric analysis (TGA) results of the ligand shell composition. 19F NMR spectra display a progressive line broadening of resonances for fluorine sites closer to the Au core. A second synthetic route used a (ligand replacement) reaction of pentafluorobenzenethiol with Au55(PPh3)12Cl6. The exchange is (as previously observed for nonfluorinated thiols) accompanied by nanoparticle core size changes to produce a polydisperse mixture within which a Au75 core species could be electrochemically discerned by its characteristic 0.74 V electrochemical energy gap. Further characterization of the polydisperse nanoparticle product was done by HPLC, TEM, TGA, optical spectroscopy, and NMR data. Both varieties of fluorous nanoparticles exhibit solubilities typical of perfluorinated materials, as opposed to proteo versions.  相似文献   

18.
Lysozyme monolayer-protected gold nanoparticles (Au NPs) which are hydrophilic and biocompatible and show excellent colloidal stability (at low temperature, ca. 4 degrees C), were synthesized in aqueous medium by chemical reduction of HAuCl4 with NaBH4 in the presence of a familiar small enzyme, lysozyme. UV-vis spectra, transmission electron microscopy (TEM), atomic force microscopy, and X-ray photoelectron spectroscopy characterization of the as-prepared nanoparticles revealed the formation of well-dispersed Au NPs of ca. 2 nm diameter. Moreover, the color change of the Au NP solution as well as UV-vis spectroscopy and TEM measurements have also demonstrated the occurrence of Ostwald ripening of the nanoparticles at low temperature. Further characterization with Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering indicated the formation of a monolayer of lysozyme molecules on the particle surface. FTIR data also indicated the intactness of the protein molecules coated on Au NPs. All the characterization results showed that the monodisperse Au NPs are well-coated directly with lysozyme. Driven by the dipole-dipole attraction, the protein-stabilized Au NPs self-assembled into network structures and nanowires upon aging under ambient temperature. On the basis of their excellent colloidal stability, controlled self-assembly ability, and biocompatible surface, the lysozyme monolayer-stabilized Au NPs hold great promise for being used in nanoscience and biomedical applications.  相似文献   

19.
We have developed a highly efficient and green catalytic deoxygenation of epoxides to alkenes using gold nanoparticles (NPs) supported on hydrotalcite [HT: Mg(6)Al(2)CO(3)(OH)(16)] (Au/HT) with alcohols, CO/H(2)O or H(2) as the reducing reagent. Various epoxides were selectively converted to the corresponding alkenes. Among the novel metal NPs on HT, Au/HT was found to exhibit outstanding catalytic activity for the deoxygenation reaction. Moreover, Au/HT can be separated from the reaction mixture and reused with retention of its catalytic activity and selectivity. The high catalytic performance of Au/HT was attributed to the selective formation of Au-hydride species by the cooperative effect between Au NPs and HT.  相似文献   

20.
We report here a facile method to obtain folic acid (FA)‐protected gold nanoparticles (Au NPs) by heating an aqueous solution of HAuCl4/FA in which FA acts as both the reducing and stabilizing agent. The successful formation of FA‐protected Au NPs is demonstrated by UV/Vis spectroscopy, transmission electron microscopy (TEM), selected‐area electron diffraction (SAED), X‐ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The intracellular uptake of these nanoparticles is facilitated by HeLa cells overexpressing the folate reporter, which itself is significantly inhibited by free FA in a competitive assay as quantified by inductively coupled plasma mass spectroscopy (ICP‐MS). This simple one‐step approach affords a new perspective for creating functional nanomaterials, and the resulting biocompatible, functional Au NPs may find some prospective applications in various biomedical fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号