首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Forced wetting experiments with various liquids were conducted to study the dynamic wetting properties of nylon filament. The molecular-kinetic theory of wetting (MKT) was used to interpret the dynamic contact angle data and evaluate the contact-line friction zeta0 at the microscopic scale. By taking account of the viscosity of the liquid, zeta0 could be related exponentially to the reversible work of adhesion. This clearly establishes an experimental link between the static and dynamic wetting properties of the material. Moreover, statistical analysis of the equilibrium molecular displacement frequency K0 and the length of the displacements lambda reveals that these two fundamental parameters of the MKT are strongly correlated, not only in the linearized form of the theory (valid close to equilibrium) but also when the nonlinear form of the equations has to be considered at higher wetting speeds.  相似文献   

2.
Wetting properties of a solid surface can change as a consequence of chemical treatment. There is a relationship between the molecular structure of a surface and the macroscopic properties of this surface such as wetting and adhesion. Information on the surface energy of a solid was obtained by calculating polar and dispersion force contributions by means of contact angle determination. The superficial modification undergone by human hair treatments with or without hydrogen peroxide at alkaline pH was studied by means of wetting force measurements. The wetting increase in treated human hair fibers was analyzed following the Hüttinger method using contact angle data, taking into account the acid-base and dispersion components of the total wetting adhesion work. The hydrogen peroxide treatment at alkaline pH leads to a partial removal of hydrocarbon chains and to the formation of ionic groups (cysteic acid residues) on the outer scale cell surface. The latter phenomenon was observed by means of an increase in the acid-base adhesion work versus water wetting liquid at alkaline pH. Copyright 2001 Academic Press.  相似文献   

3.
The wetting of solid surfaces is treated. The Young and receding contact angles are experimentally unattainable values for the majority of solid surfaces. Actually, we always observe the apparent contact angle. This makes the characterization of wetting of real surfaces problematic. It is proposed in this paper to characterize wetting of real surfaces with the advancing contact angle and the minimum work of adhesion calculated according to the Dupre equation. The advancing contact angle, which depends slightly on the experimental technique used for its measurement, corresponds to the maximal solid/liquid surface tension and correspondingly to the minimal work of adhesion, calculated according to the Dupre equation.  相似文献   

4.
Influence of surface charge on wetting kinetics   总被引:1,自引:0,他引:1  
The wettability of a titania surface, partially covered with octadecyltrihydrosilane, has been investigated as a function of solution pH. The results show that surface charge affects both static wettability and wetting kinetics. The static contact angle decreases above and below the point of zero charge of the titania surface in a Lippman-like manner as the pH is altered. The dependence of dynamic contact angle on velocity is also affected by pH. The molecular-kinetic theory (MKT) is used to interpret the dynamic contact angle data. The frequency of molecular displacement κ(0) strongly varies with surface charge, whereas the mean molecular displacement length λ is essentially unaffected. There is an exponential dependence of contact-line friction upon work of adhesion, which is varied simply by altering the pH.  相似文献   

5.
This work proposes a theoretical model for predicting the apparent equilibrium contact angle of a liquid on an ideal rough surface that is homogeneous and has a negligible body force, line tension, or contact angle hysteresis between solid and liquid. The model is derived from the conservation equations and the free-energy minimization theory for the changes of state of liquid droplets. The work of adhesion is expressed as the contact angles in the wetting process of the liquid droplets. Equilibrium contact angles of liquid droplets for rough surfaces are expressed as functions of the area ratios for the solid, liquid, and surrounding gas and the roughness ratio and wetting ratio of the liquid on the solid for the partially and fully wet states. It is found that the ideal critical angle for accentuating the contact angles by the surface roughness is 48°. The present model is compared with existing experimental data and the classical Wenzel and Cassie-Baxter models and agrees with most of the experimental data for various surfaces and liquids better than does the Wenzel model and accounts for trends that the Wenzel model cannot explain.  相似文献   

6.
Measurements of the advancing contact angles for aqueous solutions of sodium dodecyl sulfate (SDDS) or sodium hexadecyl sulfonate (SHS) in mixtures with methanol, ethanol, or propanol on a quartz surface were carried out. On the basis of the obtained results and Young and Gibbs equations the critical surface tension of quartz wetting, the composition of the surface layer at the quartz-water interface, and the activity coefficients of the anionic surfactants and alcohols in this layer as well as the work of adhesion of aqueous solutions of anionic surfactant and alcohol mixtures to the quartz surface were determined. The analysis of the contact angle data showed that the wettability of quartz changed visibly only in the range of alcohol and anionic surfactant concentration at which these surface-active agents were present in the solution in the monomeric form. The analysis also showed that there was a linear dependence between the adhesion and the surface tension of aqueous solutions of anionic surfactant and alcohol mixtures. This dependence can be described by linear equations for which the constants depend on the anionic surfactant and alcohol concentrations. The slope of all linear dependence between adhesion and surface tension was positive. The critical surface tension of quartz wetting determined from this dependence by extrapolating the adhesion tension to the value equal to the surface tension (for contact angle equal zero) depends on the assumption whether the concentration of anionic surfactant or alcohol was constant. Its average value is equal to 29.95mN/m and it is considerably lower than the quartz surface tension. The positive slope of the adhesion-surface tension curves was explained by the possibility of the presence of liquid vapor film beyond the solution drop which settled on the quartz surface and the adsorption of surface-active agents at the quartz/monolayer water film-water interface. This conclusion was confirmed by the work of adhesion of aqueous solutions of anionic surfactants and short-chain alcohol mixtures to the quartz surface determined on the basis of the contact angle data and molar fraction of anionic surfactants and alcohols and their activity coefficient in the surface layer.  相似文献   

7.
The goal of this research was to study wetting and adhesion processes between various petroleum products and solid surfaces. When a liquid interacts with a solid surface, wetting, spreading and adhesion processes determine its behavior. These processes are of great importance for understanding oil spill response as well as oil spill behavior on land and in near shore environments, and oil extraction from the reservoir rock. The current study aimed at analyzing oil affinity and adhesion to surfaces used in the mechanical recovery of oil spills. A number of crude oils and petroleum products were tested with the surface materials that are used or may potentially be used to recover oil spills. Through the study of contact angles and recovered mass, it was found that the behavior of the oils at the solid surface is largely determined by the roughness of the solid. For smooth solids, contact angle hysteresis is a good indicator of the ability of the solid to retain oil. For rougher elastomers, the advancing contact angle can be used to predict wetting and adhesion processes between oil and solid. This study showed that oleophilic elastomers (e.g., Neoprene and Hypalon) have higher oil recovery potential than smooth polymers.  相似文献   

8.

Introduction

In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas–liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface.

Methodology

The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an “adhesion-like” force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid–air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface.

Results

The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv = 10° – 70°) and hydrophobic (θadv = 105° – 120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements.

Conclusion

It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as an approximate boundary condition for such simulations. Clearly, this model is mostly influential during the spreading phase for the cases of low We number impacts (We < ˜80) since for high impact velocities, inertia dominates significantly over capillary forces in the initial phase of spreading.  相似文献   

9.
The transfer of a liquid under dynamic conditions onto a solid surface relies on wetting/adhesion under transient external forces. We found the phenomena associated with forced wetting and dewetting could not be explained by thermodynamic approaches which are based on surface energy and work of adhesion. This is because these approaches do not take account of the dynamic nature of the forced wetting and dewetting. This study uses ink transfer in waterless offset printing as an example to present a new understanding of adhesion and anti-adhesion of a liquid to a solid surface under dynamic conditions. We focus on the adhesion strength, instead of work of adhesion, at the ink-plate interface and experimentally quantified ink adhesion forces on the image and non-image areas of the printing plate. Based on adhesion force measurements we proposed that the formation of a weak boundary layer and/or the softening the non-image area due to solvent swelling are likely to be the mechanisms that causes ink refusal on the non-image area. AFM images are presented to show changes of the non-image surface before and after contacting with ink.  相似文献   

10.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

11.
The wetting properties of surfactants on solid surfaces form the basis of many industrial and biological processes. The preferential adsorption of the surfactants from aqueous solutions onto solid surfaces alter the adhesion tension of the surface and this behavior may cause partial to complete wetting of the surfaces by the aqueous surfactant solutions. However, different types of surfactants show different wetting characteristics. To study the wetting properties of biologically produced rhamnolipids (RL), advancing contact angles of the aqueous solutions of the RL mixture of R1 and R2 in a ratio of R2/R1=1.1 were measured as a function of surfactant concentration. For a comparison of the wetting performance, sodium dodecyl sulfate (SDS) was chosen as the reference surfactant. A hydrophilic glass surface, a hydrophobic polymer, polyethylene terephthalate (PET), and gold surface were used as the solid surfaces to determine the wetting characteristics of rhamnolipids. At low surfactant concentrations (RL concentration <3x10(-5)M, SDS concentration<3x10(-4)M) contact angle (Theta) varied in a certain range depending on the character of the surfactant interactions with the surface. This was followed by a decrease in contact angle. Parallel to this behavior, at low surfactant concentrations the adhesion tension decreased, then remained constant and an increase at higher surfactant concentrations was obtained on hydrophobic surfaces. On hydrophilic surfaces a steady decrease in adhesion tension was observed with both surfactant solutions.  相似文献   

12.
To determine whether the large differences in adhesion for polyethylene coatings applied to different types of copper surface could be attributed to changes in work of adhesion or wettability, the variations of contact angle with time has been measured for molten polyethylene droplets on these surfaces. It is concluded from these measurements that the low peel strengths obtained on certain substrates cannot be accounted for by a low work of adhesion of poor wetting of the surface.  相似文献   

13.
14.
阳离子和两性表面活性剂对石英表面润湿性的影响   总被引:3,自引:0,他引:3  
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)溶液在石英表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势, 讨论了黏附张力和黏附功的变化规律. 研究发现, 两种表面活性剂在高能的石英表面的吸附造成石英-水的界面自由能(γsl)增大. C16PB通过弱相互作用随机吸附到石英表面, 其增大γsl的能力与降低表面张力(γ1g)的能力相当, 接触角(θ)随浓度变化不大. C16PC 随体相浓度增大能够在石英表面通过静电作用形成定向排列的单分子层, 而后在临界胶束浓度(cmc)附近形成双层结构, 接触角随浓度变化的趋势可分为4个区域, 并通过一个极大值.  相似文献   

15.
To consider a sessile drop on an ideal solid surface in equilibrium with a vapor phase, the classic Young equation was given. The derivation of the Young equation was based on both the mechanics and the energy knowledge. According to the constant volume of the liquid in the wetting process of the liquid on a smooth and homogeneous solid surface and the low energy law, Young equation was ob-tained through the mathematic method in this paper. The previous work indicated that the contact angle θ was a function...  相似文献   

16.
We demonstrate that wettability of poly(ethylene glycol) (PEG) surfaces can be controlled using nanostructures with various geometrical features. Capillary lithography was used to fabricate PEG nanostructures using a new ultraviolet (UV) curable mold consisting of functionalized polyurethane with acrylate group (MINS101m, Minuta Tech.). Two distinct wetting states were observed depending of the height of nanostructures. At relatively lower heights (< 300 nm for 150 nm pillars with 500 nm spacing), the initial contact angle of water was less than 80 degrees and the water droplet easily invaded into the surface grooves, leading to a reduced contact angle at equilibrium (Wenzel state). At relatively higher heights (> 400 nm for 150 nm pillars with 500 nm spacing), on the other hand, the nanostructured PEG surface showed hydrophobic nature and no significant change in contact angle was observed with time (Cassie state). The presence of two wetting states was also confirmed by dynamic wetting properties and contact-angle hysteresis. The wetting transition from hydrophilic (bare PEG surface) to hydrophobic (PEG nanostructures) was described by the Cassie-Baxter equation assuming that enhanced hydrophobicity is due to the heterogeneous wetting mediated by an air pocket on the surface. The measured contact angles in the Cassie state were increased with increasing air fraction, in agreement with the theoretical prediction.  相似文献   

17.
A survey of publications concerning the properties of solids in relation to wetting phenomena is presented. Factors influencing the contact angle value as well as problems of objective approach to research into wetting phenomena are discussed. Peculiarities of the direct and reverse processes during the formation of the solid—liquid—vapor three-phase contact and the inevitability of contact angle hysteresis for polar solids and liquids are analyzed. It is suggested that contact angle hysteresis is due to high energy of the interaction between the liquid and the solid and hence a long relaxation time of the three-phase contact system. Specific features of the response of a solid surface to all surface processes (“chemomechanics”) is discussed. Cleaning of solid surfaces as well as surface preparation for repeated measurements is considered. It is shown that good reproducibility of results is possible if conditions for sample preparation are met. The results of determination of the activation energy for wetting of glass surface with water are presented. The influence of the structure of solids (their hardness) on the contact angle values is demonstrated. Inevitability of the presence of different-type active sites characterized by different dissociation constants (pKa) on the surface of solids is discussed. The pKa values and content of these surface sites obtained from potentiometric titration and wetting data are estimated. The estimates thus obtained are in reasonable agreement with each other and can thus be used in practical applications. However, potentiometric titration is currently inappropriate for evaluating the content of individual surface sites as well as the surface charge.  相似文献   

18.
Microstructured polymer surfaces, including conducting and insulating polymers, have been prepared to achieve electrochemical control of the surface energy and topography. The reported surface switches include pillar- and mesh-like surface patterns of polypyrrole (PPy), poly(3,4-ethylene-dioxythiophene) (PEDOT), and photoresists. The structures have been evaluated by contact angle measurements and optical and scanning electron microscopy to determine the surfaces characteristics. These microstructured polymer surface switches can be electrochemically modified from dewetting to wetting conditions, with a maximum associated change of the water contact angle from 129 degrees to 44 degrees . This contact angle switching was observed for samples in which dynamic control of the surface topography and surface tension was coupled. Control of topography was achieved with a dynamic height-switching range of more than 3 mum. In addition, dynamic control of anisotropic wetting is reported. Our experiments were carried out under conditions that are suitable for a biointerface, implying potential application in biotechnology and cell science. In particular, switching of the energy, chemistry, and topography of the surface, along with their associated orientation, are interesting features for dynamic (electronic) control of the seeding and proliferation for living cells. The technology reported promises for electronically controlled cell-growth within Petri dishes, well plates, and other cell-hosting tools.  相似文献   

19.
In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning effect exhibited in the parallel direction suggests that groove texturing is a viable approach to create mechanically robust, self-cleaning, superoleophobic surfaces.  相似文献   

20.
Contact line and contact angle dynamics in superhydrophobic channels   总被引:1,自引:0,他引:1  
The dynamics of the wetting and movement of a three-phase contact line confined between two superhydrophobic surfaces were studied using a mean-field free-energy lattice Boltzmann model. Principle features of superhydrophobic surfaces, such as trapped vapor/air between rough microstructures, high contact angles, reduced contact angle hysteresis, and low resistance to fluid flow, were all observed. Movement of the three-phase contact line over a well-patterned superhydrophobic surface displays a periodic stick-jump-slip behavior, while the dynamic contact angle changes accordingly from maximum to minimum. Two regimes were found for the flow velocity as a function of surface roughness and can be related directly to the balance between driving force and flow resistance. This work provides a better understanding of dynamic wetting and fluid flow behaviors over superhydrophobic surfaces and hence could be useful in related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号