首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
Au-Fe(3)O(4) composite nanoparticles have received much research interest due to their promising biomedical applications. In this work, Au-Fe(3)O(4) composites with well-defined dimer-like nanostructure were synthesized via thermal decomposition route. The surfactant 1,2-hexandicandiol has proved to be critical for the formation of the Au-Fe(3)O(4) hetero-dimers. The hetero-dimers production yield could be significantly improved to be 90% when the 1,2-hexandicandiol concentration was optimized at 0.6 M. The obtained Au-Fe(3)O(4) hetero-dimers possess dual-functionalities of plasmon resonance and magnetization. Moreover, the Fe(3)O(4) domain of the hetero-dimers can be tuned readily by adjusting the molar ratio between Fe and Au sources. Furthermore, it was demonstrated that these Au-Fe(3)O(4) hetero-dimers could be further developed into star-like Au-Fe(3)O(4) nanoparticles which showed plasmon absorption at NIR region.  相似文献   

2.
Magnetic multilayered, onion-like, heterostructured nanoparticles are interesting model systems for studying magnetic exchange coupling phenomena. In this work, we synthesized heterostructured magnetic nanoparticles composed of two, three, or four components using iron oxide seeds for the subsequent deposition of manganese oxide. The MnO layer was allowed either to passivate fully in air to form an outer layer of Mn(3)O(4) or to oxidize partially to form MnO|Mn(3)O(4) double layers. Through control of the degree of passivation of the seeds, particles with up to four different magnetic layers can be obtained (i.e., FeO|Fe(3)O(4)|MnO|Mn(3)O(4)). Magnetic characterization of the samples confirmed the presence of the different magnetic layers.  相似文献   

3.
Microflowers made of interconnected MnO2 nanosheets have been successfully synthesized in a microwave reactor through a hydrothermal reduction of KMnO4 with aqueous HCI at elevated temperatures in the presence of superparamagnetic Fe3O4SiO2 core-shell nanoparticles.Due to the chemical compatibility between SiO2 and MnO2,the heterogeneous reaction leads to the spontaneous encapsulation of the Fe3O4@SiO2 core-shell nanoparticles in the MnO2 microflowers.The resulting hybrid particles exhibit multiple properties including high surface area associated with the MnO2nanosheets and superparamagnetism originated from the Fe3O4@SiO2 core-shell nanoparticles.which are beneficial for applications requiring both high surface area and magnetic separation.  相似文献   

4.
Highly crystalline metal oxide nanoparticles such as CoO, ZnO, Fe(3)O(4), MnO, Mn(3)O(4), and BaTiO(3) were synthesized in just a few minutes by reacting metal alkoxides, acetates or acetylacetonates with benzyl alcohol under microwave heating.  相似文献   

5.
制备了单壁碳纳米管/金-四氧化三铁纳米粒子复合材料修饰玻碳电极,用循环伏安法研究了对硫磷在该电极上的电化学行为。该电极对对硫磷具有较好的富集和催化特性,在优化条件下,对硫磷的浓度与其峰电流在2.0×10-9~1.0×10-6 mol/L范围内呈线性关系,其检出限为1.0×10-9 mol/L。对1.0×10-7 mol/L的对硫磷溶液平行测定9次的RSD为3.9%(n=9)。用该电极对不同蔬菜样品中的对硫磷进行测定,平均回收率在96.0%~105.5%之间,相对标准偏差在3.3%~3.9%之间。  相似文献   

6.
Hydrous Fe and Mn oxides (HFO and HMO) are important sinks for heavy metals and Pb(II) is one of the more prevalent metal contaminants in the environment. In this work, Pb(II) sorption to HFO (Fe(2)O(3) x nH(2)O, n=1-3) and HMO (MnO(2)) surfaces has been studied with EXAFS: mononuclear bidentate surface complexes were observed on FeO(6) (MnO(6)) octahedra with PbO distance of 2.25-2.35 Angstrom and PbFe(Mn) distances of 3.29-3.36 (3.65-3.76) Angstrom. These surface complexes were invariant of pH 5 and 6, ionic strength 2.8 x 10(-3) to 1.5 x 10(-2), loading 2.03 x 10(-4) to 9.1 x 10(-3) mol Pb/g, and reaction time up to 21 months. EXAFS data at the Fe K-edge revealed that freshly precipitated HFO exhibits short-range order; the sorbed Pb(II) ions do not substitute for Fe but may inhibit crystallization of HFO. Pb(II) sorbed to HFO through a rapid initial uptake ( approximately 77%) followed by a slow intraparticle diffusion step ( approximately 23%) resulting in a surface diffusivity of 2.5 x 10(-15) cm(2)/s. Results from this study suggest that mechanistic investigations provide a solid basis for successful adsorption modeling and that inclusion of intraparticle surface diffusion may lead to improved geochemical transport depiction.  相似文献   

7.
Magnetite nanoparticles with tunable gold or silver shell   总被引:7,自引:0,他引:7  
Fe3O4 nanoparticles with size approximately 13 nm have been prepared successfully in aqueous micellar medium at approximately 80 degrees C. To make Fe3O4 nanoparticles resistant to surface poisoning a new route is developed for coating Fe3O4 nanoparticles with noble metals such as gold or silver as shell. The shell thickness of the core-shell particles becomes tunable through the adjustment of the ratio of the constituents. Thus, the route yields well-defined core-shell structures of size from 18 to 30 nm with varying proportion of Fe3O4 to the noble metal precursor salts. These magnetic nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, differential scanning calorimetry (DSC), Raman and temperature-dependent magnetic studies.  相似文献   

8.
Fe3O4纳米粒子与正离子性的重氮树脂在硅基底的表面形成稳定自组装膜,还原后可通过化学气相沉积(CVD)法在硅基底的表面生长多壁碳纳米管.以聚丙烯酸包裹Fe3O4纳米颗粒能够有效地防止纳米粒子的团聚,并提高组装效率,得到均匀的纳米粒子自组装膜,从而获得在硅基底上均匀分布的多壁碳纳米管.  相似文献   

9.
The thermal annealing of silica nanospheres encapsulating Fe(3)O(4) nanocrystals and Pd(2+) complexes led to the formation of heterodimers consisting of Fe(3)O(4) and PdO nanoparticles encapsulated in a silica shell, allowing for their controllable transformation into either Fe(3)O(4)/Pd heterodimers or FePd alloy nanocrystals through a solid state reduction process.  相似文献   

10.
H Son  JH Lee  YR Kim  IS Lee  S Han  X Liu  J Jaworski  JH Jung 《The Analyst》2012,137(17):3914-3916
A new BODIPY dye conjugate has demonstrated selective quenching by mercury over other metal ions. Coupling of this probe to Au-Fe(3)O(4) nanoparticles as well as platinum electrodes offered sensitive systems for suspension and surface based sensing, respectively.  相似文献   

11.
INTRoDUCTIoNRecentlywehaveproposedamethodofchemicalprobereaction(l3forstudyingthereactionbehaviorsoftransitionmetalcomplexes.BythismethodtheserlalresultswereobtainedusingtheC,H, H,OandC2H2 H2astheprobereactions[1~53.Here-inisfurtherpresentedanotherkindoftheprobereaction--theacetoniaztionofaceticacidbydecarboxylationoverfourcomp1exeswithgeneralformula[Fe2M(p3-O)(p-O,CCH,),(H,O),j.xH,O,whereM=Fe(m),Mn(n),Co(I)andNi(n)'whichafterwardswillbedenotedas[Fe2M0AHjforsimplicity(N0te:inthe…  相似文献   

12.
Sonodynamic therapy (SDT) has the advantages of high penetration, non-invasiveness, and controllability, and it is suitable for deep-seated tumors. However, there is still a lack of effective sonosensitizers with high sensitivity, safety, and penetration. Now, ultrasound (US) and glutathione (GSH) dual responsive vesicles of Janus Au-MnO nanoparticles (JNPs) were coated with PEG and a ROS-sensitive polymer. Upon US irradiation, the vesicles were disassembled into small Janus Au-MnO nanoparticles (NPs) with promoted penetration ability. Subsequently, GSH-triggered MnO degradation simultaneously released smaller Au NPs as numerous cavitation nucleation sites and Mn2+ for chemodynamic therapy (CDT), resulting in enhanced reactive oxygen species (ROS) generation. This also allowed dual-modality photoacoustic imaging in the second near-infrared (NIR) window and T1-MR imaging due to the released Mn2+, and inhibited orthotopic liver tumor growth via synergistic SDT/CDT.  相似文献   

13.
The influence of magnetite (Fe(3)O(4)) nanoparticles on the rheological properties of kappa-, iota- and lambda-carrageenan gels has been investigated. Small amplitude oscillatory shear measurements were performed to study the effect of the presence of Fe(3)O(4) nanoparticles with particle sizes of ca. 10 nm on the gel properties, as a function of carrageenan type, carrageenan concentration and magnetite load. The formation of Fe(3)O(4) nanoparticles on the presence of biopolymer was observed to promote the gelation process and lead to stronger gels as indicated by an increase in the gel viscoelastic moduli and of the gelation temperature. This effect was more marked for kappa-carrageenan than for iota- and lambda-carrageenan and has been proposed to depend not only on Fe(3)O(4) concentration but also on the concentration of potassium ions. A mechanism based on the combined effect of Fe(3)O(4) nanoparticles and potassium ions was suggested, involving the adsorption of potassium ions on the negatively charged surface of the Fe(3)O(4) nanoparticles, thus leading to an increase of the potassium ion concentration within the "carrageenan cages" containing the magnetite. This would, therefore, promote more extensive biopolymer helical aggregation, thus resulting in the formation of a stronger kappa-carrageenan gel in the presence of Fe(3)O(4), as observed. Since iota- and lambda-carrageenan gels are known to be less sensitive to potassium ions concentration, the effect of precipitating Fe(3)O(4) within these biopolymers is reduced.  相似文献   

14.
2-Mercapto- and 4-mercaptopyridine (2- and 4MPy) react with the [Fe(CN)(5)(H(2)O)](3-) complex, forming the S-coordinated [Fe(CN)(5)(2MPy)](3-) and the N-coordinated [Fe(CN)(5)(4MPy)](3-) complexes. The rates of formation and dissociation of the [Fe(II)(CN)(5)(2MPy)](3-) complex were determined as k(f) = 294 dm(3) mol(-1) s(-1) and k(d) = 0.019 s(-1) by means of stopped-flow technique. The equilibrium constants for the iron(II) and -(III) species were calculated as K(f)(II) = 1.5 x 10(4) mol(-1) dm(3) and K(f)(III) = 1.3 x 10(6) mol(-1) dm(3), in comparison with 2.6 x 10(5) and 3.4 x 10(4) mol(-1) dm(3), respectively, for the 4MPy isomer. In the presence of gold nanoparticles, both 2- and 4MPy can displace the stabilizing citrate species, leading to substantial aggregation in aqueous solution, as deduced from the surface-enhanced Raman spectroscopy effect and from the decay of the 520-nm plasmon band accompanied by the rise of the characteristic exciton band at 650 nm. The [Fe(CN)(5)(4MPy)](3-) complex promotes strong stabilization of the gold nanoparticles by interacting through the S atom. On the other hand, the labile [Fe(CN)(5)(2MPy)](3-) complex induces aggregation, delivering the 2MPy ligand to the gold nanoparticles.  相似文献   

15.
Purifying heterodimers: Differential magnetic catch and release separation is used to purify two important hybrid nanocrystal systems, Au-Fe(3) O(4) and FePt-Fe(3) O(4) . The purified samples have substantially different magnetic properties compared to the as-synthesized materials: the magnetization values are more accurate and magnetic polydispersity is identified in morphologically similar hybrid nanoparticles.  相似文献   

16.
This work is directed towards the synthesis of multifunctional nanoparticles composed of Fe(3)O(4)-Au nanocomposite cores and a porous silica shell (Fe(3)O(4)-Au/pSiO(2)), aimed at ensuring the stability, magnetic, and optical properties of magnetic-gold nanocomposite simultaneously. The prepared Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles are characterized by means of TEM, N(2) adsorption-desorption isotherms, FTIR, XRD, UV-vis, and VSM. Meanwhile, as an example of the applications, catalytic activity of the porous silica shell-encapsulated Fe(3)O(4)-Au nanoparticles is investigated by choosing a model reaction, reduction of o-nitroaniline to benzenediamine by NaBH(4). Due to the existence of porous silica shells, the reaction with Fe(3)O(4)-Au/pSiO(2) core/shell nanoparticles as a catalyst follows second-order kinetics with the rate constant (k) of about 0.0165 l mol(-1) s(-1), remarkably different from the first-order kinetics with the k of about 0.002 s(-1) for the reduction reaction with the core Fe(3)O(4)-Au nanoparticles as a catalyst.  相似文献   

17.
采用共沉淀法合成Fe3O4纳米粒子, 将含有硅氧烷基的离子型改性剂二甲基十八烷基氯化铵与Fe3O4纳米粒子进行接枝反应, 再用脂肪醇聚氧乙烯醚磺酸盐的长链阴离子交换Cl-, 在Fe3O4纳米粒子表面生成具有阴、 阳离子双电层结构的表面处理层, 得到无溶剂Fe3O4纳米流体. 研究结果表明, 在Fe3O4纳米粒子表面成功接枝了有机物长链, 改性的Fe3O4纳米粒子呈单分散分布, 其损耗剪切模量G″明显大于储能剪切模量G', 具有明显的流体行为, 在室温下即可流动.  相似文献   

18.
In this paper, surface plasmon resonance biosensors based on magnetic core/shell Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were developed for immunoassay. With Fe(3)O(4) and Fe(3)O(4)/Ag nanoparticles being used as seeding materials, Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles were formed by hydrolysis of tetraethyl orthosilicate. The aldehyde group functionalized magnetic nanoparticles provide organic functionality for bioconjugation. The products were characterized by scanning electronic microscopy (SEM), transmission electronic microscopy (TEM), FTIR and UV-vis absorption spectrometry. The magnetic nanoparticles possess the unique superparamagnetism property, exceptional optical properties and good compatibilities, and could be used as immobilization matrix for goat anti-rabbit IgG. The magnetic nanoparticles can be easily immobilized on the surface of SPR biosensor chip by a magnetic pillar. The effects of Fe(3)O(4)/SiO(2) and Fe(3)O(4)/Ag/SiO(2) nanoparticles on the sensitivity of SPR biosensors were also investigated. As a result, the SPR biosensors based on Fe(3)O(4)/SiO(2) nanoparticles and Fe(3)O(4)/Ag/SiO(2) nanoparticles exhibit a response for rabbit IgG in the concentration range of 1.25-20.00 μg ml(-1) and 0.30-20.00 μg ml(-1), respectively.  相似文献   

19.
We demonstrate for the first time that bifunctional Au-Fe(3)O(4) dumbbell nanoparticles can be used for sensitive and selective turn-on fluorescent detection of cyanide based on the inner filter effect, and a "magnetic concentration-washing process" is proposed to effectively reduce the interference of dye pollution.  相似文献   

20.
A method established in the present study has proven to be effective in the synthesis of Mn(2)O(3) nanocrystals by the thermolysis of manganese(III) acetyl acetonate ([CH(3)COCH=C(O)CH(3)](3)-Mn) and Mn(3)O(4) nanocrystals by the thermolysis of manganese(II) acetyl acetonate ([CH(3)COCH=C(O)-CH(3)](2)Mn) on a mesoporous silica, SBA-15. In particular, Mn(2)O(3) nanocrystals are the first to be reported to be synthesized on SBA-15. The structure, texture, and electronic properties of nanocomposites were studied using various characterization techniques such as N2 physisorption, X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results of powder XRD at low angles show that the framework of SBA-15 remains unaffected after generation of the manganese oxide (MnO(x)) nanoparticles, whereas the pore volume and the surface area of SBA-15 dramatically decreased as indicated by N2 adsorption-desorption. TEM images reveal that the pores of SBA-15 are progressively blocked with MnO(x) nanoparticles. The formation of the hausmannite Mn(3)O(4) and bixbyite Mn(2)O(3) structures was clearly confirmed by XRD. The surface structures of MnO(x) were also determined by LRS, XPS, and TPR. The crystalline phases of MnO(x) were identified by LRS with corresponding out-of-plane bending and symmetric stretching vibrations of bridging oxygen species (M-O-M) of both MnO(x) nanoparticles and bulk MnO(x). We also observed the terminal Mn=O bonds corresponding to vibrations at 940 and 974 cm-1 for Mn(3)O(4)/SBA-15 and Mn(2)O(3)/SBA-15, respectively. These results show that the MnO(x) species to be highly dispersed inside the channels of SBA-15. The nanostructure of the particles was further identified by the TPR profiles. Furthermore, the chemical states of the surface manganese (Mn) determined by XPS agreed well with the findings of LRS and XRD. These results suggest that the method developed in the present study resulted in the production of MnO(x) nanoparticles on mesoporous silica SBA-15 by controlling the crystalline phases precisely. The thus-prepared nanocomposites of MnO(x) showed significant catalytic activity toward CO oxidation below 523 K. In particular, the MnO(x) prepared from manganese acetyl acetonate showed a higher catalytic reactivity than that prepared from Mn(NO(3))2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号