首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A droplet of aqueous solution containing a certain molar ratio of redox couple is first attached onto a platinum electrode surface, then the resulting drop electrode is immersed into the organic solution containing very hydrophobic electrolyte. Combined with reference and counter electrodes, a classical three-electrode system has been constructed. Ion transfer (IT) and electron transfer (ET) are investigated systematically using three-electrode voltammetry. Potassium ion transfer and electron transfer between potassium ferricyanide in the aqueous phase and ferrocene in nitrobenzene are observed with potassium ferricyanide/potassium ferrocyanide as the redox couple. Meanwhile, the transfer reactions of lithium, sodium, potassium, proton and ammonium ions are obtained with ferric sulfate/ferrous sulfate as the redox couple. The formal transfer potentials and the standard Gibbs transfer energy of these ions are evaluated and consistent with the results obtained by a four-electrode system and other methods.  相似文献   

2.
两种喹啉类药物在水/硝基苯界面循环伏安研究   总被引:1,自引:0,他引:1  
本文用循环伏安法研究了盐酸喹啉和8-羟基喹啉配合质子在水/硝基苯界面的转移过程, 讨论了水相pH值对其转移行为的影响, 探讨了有关转移过程的机理, 测定并计算了有关热力学参数。  相似文献   

3.
The facilitated transfer characteristics of Cd2+ ion by 4-morpholinoacetophenone-4-ethyl-3-thiosemicarbazone (MAPET) across water/1,2-dicholoroethane (1,2-DCE) interface and its electrochemical properties were investigated by voltammetric measurements. Cyclic voltammetry (CV) was employed to examine the transfer in the conditions of the ligand (organic phase) in excess and the obtained transfer peaks have reversible nature at different metal concentrations and scan rates. The dependence of the obtained half-wave transfer potential on MAPET concentration showed that the equilibrium is effectively displaced towards a 1: 3 (Cd2+: ligand) stoichiometry with an association constant of logβ 3 0 = 12.96 ± 0.09 for the Cd2+ ion, corresponding to the TIC/TID mechanism.  相似文献   

4.
The electrochemical instability has been shown to appear in the transfer of cationic surfactant ions across the 1,2-dichloroethane/water interface. Cyclic voltammograms possess all fundamental characteristics that are predicted by the theory of electrochemical instability: the presence of the instability window, that is, the potential range where the interface becomes unstable, the location of the instability window around the standard ion transfer potential of surface-active ions, and the dependence of the width of the instability window on the concentration of the surfactant ions. Electrocapillary measurements clearly demonstrate that the interface becomes unstable, while the interfacial tension is positive, being higher than 20 mN m(-1). The electrocapillary curve exhibits the discontinuities at both ends of the instability window, indicating the similarity between the electrochemical instability and the phase transitions induced by the temperature, pressure, and chemical potential. The results from voltammetry and interfacial tension measurements for cationic surfactants support the idea that the electrochemical instability, so far reported in the transfer of anionic surfactants across the liquid/liquid interface, is one of intrinsic properties of the two-phase systems where the partition of surface-active ions takes place.  相似文献   

5.
Lateral quantized charge transfer was observed with gold nanoparticle monolayers at the air/water interface. The electronic conductivity was measured by using an interdigitated arrays (IDA) electrode perpendicularly aligned at the air/water interface where a particle ensemble was trapped between the IDA fingers. The overall voltammetric responses were analogous to that of the Coulomb blockade with a relatively flat central gap. This gap was found to shrink with increasing surface pressure. Differential pulse voltammetry revealed a series of well-defined voltammetric peaks within this central gap, which are ascribed to the single electron transfer of the particle ensemble. This observation was interpreted on the basis of relatively weak electronic coupling between neighboring particles where the particles behave more individually.  相似文献   

6.
The electrolytic transfer of 12- and 18-molybdophosphate anions across the water/nitrobenzene interface has been investigated by cyclic voltammetry (CV) and chronopotentiometry with cyclic linear current-scanning (CLC). The transfer behavior is very complicated due to the coupled chemical reactions occurring in the system. The transfer processes of heteropoly anions with a negative charge of 3 or 4 are determined by a set of rather obscure equilibria of dissociation and disproportionation, etc., and depend on pH as well as on the composition of the heteropoly anions. The stable forms and pH ranges of heteropoly anions can be confirmed directly through their voltammetric behavior. The experimental results show that an electrochemical study at the water/organic phase interface is very useful for monitoring the states of the heteropoly acids or salts in solution.  相似文献   

7.
The electrochemically driven transfer of the chiral anions of d- and l-tryptophan across the interface water/chiral liquid (d- or l-menthol) is stereoselective, and it can be used to determine quantitatively the difference in Gibbs energies for the solvation of chiral ions in chiral liquids. The ion transfer can be achieved in a three-phase arrangement where a droplet of the chiral liquid containing decamethylferrocene as the electroactive redox probe is attached to a graphite electrode immersed in the aqueous solution containing the chiral ions.  相似文献   

8.
The phase transfer mechanism of 18-molybdophosphate anion at the water/nitrobenzene interface has been investigated by chronopotentiometry with cyclic linear current-scanning (CLC) and cyclic voltammetry (CV). The transfer species is 18-molybdophosphtae anion with a charge number of 4, H2[P2Mo18O62]4-. The transfer process is controlled by diffusion at a slow polarization rate and considerably influenced by pH of the aqueous phase. The stable forms and pH range of the heteropoly anion in the aqueous solution can be directly confirmed through voltammetric behavior. The theoretical analysis of the relationship between the transfer potential and solution pH is identical to the experimental results. The linear concentration relationship with the transfer peak current is suggested to be used in the determination of heteropoly acids (salts).  相似文献   

9.
10.
The transfer of the metal cation across the interface between two immiscible electrolyte solutions facilitated by complex formation with a ligand at the interface was investigated both theoretically and experimentally. The theory of single-scan voltammetry was derived which enables the complex stoichiometry (1:1, 1:2 or 1:3. cation to ligand) to be determined as well as the thermodynamic and transport parameters of the facilitated charge transfer controlled by the diffusion of the ligand. Application of the theoretical results was illustrated for the transfer of Li+ and Cd2+ ions across the water/nitrobenzene interface facilitated by complexation with the neutral macrocyclic polyether diamine.  相似文献   

11.
12.
13.
This publication presents a detailed experimental and theoretical study of mass transfer of triethylamine (TEA) across the n-decane/water interface. In preliminary investigations, the partition of TEA between n-decane and water is determined. Based on the experimental finding that the dissociation of TEA takes place in the aqueous and in the organic phase, we assume that the interfacial mass transfer is mainly affected by adsorption and desorption of ionized TEA molecules at the liquid/liquid interface. Due to the amphiphilic structure of the dissociated TEA molecules, a dynamic interfacial tension measurement technique can be used to experimentally determine the interfacial mass transport. A model-based approach, which accounts for diffusive mass transport in the finite liquid bulk phases and for adsorption and desorption of ionized TEA molecules at the interface, is employed to analyze the experimental data. In the equilibrium state, the interfacial tension of dissociated TEA at the n-decane/water interface can be adequately described by the Langmuir isotherm. The comparison between the theoretical and the experimental dynamic interfacial tension data reveals that an additional activation energy barrier for adsorption and desorption at the interface has to be regarded to accurately describe the mass transport of TEA from the n-decane phase into the aqueous phase. Corresponding adsorption rate constants can be obtained by fitting the theoretical predictions to the experimental data. Interfacial tension measurements of mass transfer from the aqueous into the organic phase are characterized by interfacial instabilities caused by Marangoni convection, which result in an enhancement of the transfer rate across the interface.  相似文献   

14.
15.
Spontaneously adsorbed monolayers of [Ru(bpy)2PIC](PF6)2 have been formed on fluorine doped tin oxide macro- and microelectrodes, bpy is 2,2′-bipyridyl and PIC is 2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline. These monolayers exhibit well-defined, almost ideal electrochemical responses over a wide range of voltammetric scan rates. The formal potential of the Ru2+/3+ process shifts by less than 30 mV upon immobilization suggesting that the monolayers are well solvated. Significantly, chronoamperometry, conducted on a microsecond timescale, reveals that protonation of the PIC bridging ligand modulates the rate of interfacial electron transfer. The heterogeneous electron transfer rate constant, measured at an overpotential of +50 mV, decreases from 7.0 ± 1.1 × 105 to 0.7 ± 0.1 × 105 s−1 as the pH of the supporting electrolyte is increased from 1.7 to 9.3. These observations are consistent with the redox mechanism occurring via a heterogeneous electron transfer process, the rate of PIC which depends on the energy difference between the metal dπ-orbitals and the lowest unoccupied molecular orbital (LUMO) of the bridge. Protonation of the bridging ligand decreases this energy gap, resulting in an overall increase in the rate of the redox reaction. Significantly, despite the close proximity of the luminophores to a conducting surface, the monolayers remain luminescent suggesting that the electronically excited state is only weakly coupled to the electrode surface. This is consistent with bipyridyl as the site of the excited state in the metal complex.  相似文献   

16.
17.
Here we report the synthesis of a new redox-active ionic liquid (IL), (ferrocenylmethyl)dodecyldimethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate that can be used to form the polarizable water│IL interface at an elevated temperature (43 °C). Experimental approach is based on the cyclic voltammetry of the charge transfer processes occurring at the IL membrane supported on a thin microporous filter. Evidence is provided of the interfacial electron transfer between the ferrocenated cation of IL and an electron acceptor, IrCl62?, in the adjacent aqueous phase.  相似文献   

18.
A molten salt, or ionic liquid, composed of tetrahexylammonium bis(perfluoroethylsulfonyl)imide forms with an aqueous solution a polarized interface where the phase-boundary potential can be controlled externally. The available potential window of about 300 mV at 40 °C enables us to apply various electrochemical techniques for studying the structure and charge transfer reactions at the molten salt–water interface. Cyclic voltammetry of the transfer of moderately hydrophobic ions, such as 1-octyl-3-methylimidazolium and hexafluorophosphate ions, across the interface exemplifies the potentiality of this new electrochemical interface. This new type of polarized interface would facilitates electrochemical studies of molten salt–water two-phase systems that have been studied as an environmentally benign alternative of organic solvent–water two-phase systems for liquid–liquid extraction and two-phase organic synthesis.  相似文献   

19.
用循环线性电流扫描计时电位法(CLC)、循环伏安法(CV)和微分脉冲伏安法(DPV)研究了五种胆碱类药物在水/硝基苯界面(W/NB)上的转移行为。在水相溶液呈碱性时,观察到了伴有不可逆水解反应的相转移过程。讨论了药物结构中的取代基效应,并依据离子转移的标准Gibbs能△0^WGtr^0度测量了取代基的疏水性效应及药物的脂溶性。  相似文献   

20.
The influence of a phospholipid, dipalmitoyl phosphatidylcholine, layer at a nitrobenzenelwater interface on the transfer of tetraethylammonium ion and a polyammonium anti-fungus agent, poly[(dimethylimino)(2-oxo-1,2-ethanediyl)imino1,6-hexanediylimino (1-oxo-1,2-ethanediyl)(dimethylimino)-1,6-hexanediyl] ion, across the interface was studied by normal pulse voltammetry. When the phospholipid was adsorbed to form a monolayer at the nitrobenzenelwater interface by its addition to the organic phase, the half-wave potential in the current vs. potential curves for the transfer of tetraethylammonium ion did not change, but the limiting current was significantly decreased at certain sampling times, indicating a retarding effect of the layer on the ion-transfer. On the other hand, in the current vs. potential curves for the transfer of the polyammonium ion, no significant change in either the half-wave potential or the limiting current was observed upon adding the phospholipid, indicating that the polyammonium ion can easily permeate through the phospholipid layer. The results suggest a new application of the voltammetric technique to the study of cell membrane permeability to polyionic bioactive compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号