首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Crystallization and melting behavior are studied by small-angle X-ray scattering (SAXS) for a series of recently synthesized monotropic liquid crystalline polycarbonates based on α-methyl stilbene mesogen and methylene flexible spacer. The one-dimensional electron density correlation function is used to obtain long period, crystal thickness, and linear crystallinity from the Lorentz-corrected SAXS intensity. Changes in these parameters during nonisothermal crystallization and melting are explained by a model of dual crystal populations. The primary crystals form first using the liquid crystalline phase as crystal nuclei, while smaller and less perfect crystals form later from the isotropic phase at low temperature. The results of the real-time SAXS study of isothermal crystallization also support the view that the nematic phase serves as crystal nuclei for fast crystallization. An odd-even effect in crystal thickness and linear crystallinity is observed in all the SAXS experiments mentioned above. The results of this study and our complementary wide-angle X-ray scattering (WAXS) investigation show clearly that the difference in the position of the neighboring carbonate dipoles on a chain affects structural organization both at the unit cell level and at the level of the crystal in these monotropic LCPs. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Urate oxidase from Asperigillus flavus has been shown to be a model protein for studying the effects of polyethylene glycol (PEG) on the crystallization of large proteins. Extensive experimental studies based on small angle x-ray scattering [Vivares and Bonnete, J. Phys. Chem. B 108, 6498 (2004)] have determined the effects of salt, pH, temperature, and most importantly PEG on the crystallization of this protein. Recently, some aspects of the phase diagram have also been determined experimentally. In this paper, we use Monte Carlo techniques to predict the phase diagram for urate oxidase in solution with PEG, including the liquid-liquid and liquid-solid coexistence curves. The model used includes an electrostatic interaction, van der Waals attraction, and a polymer-induced depletion interaction [Vivares et al., Eur. Phys. J. E 9, 15 (2002)]. Results from the simulation are compared with experimental results.  相似文献   

3.
The aqueous-phase behavior of mannosylerythritol lipid A (MEL-A), which is a glycolipid biosurfactant produced from vegetable oils by yeast strains of the genus Pseudozyma, was investigated using polarized optical microscopy, small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). MEL-A was found to self-assemble into a variety of distinctive lyotropic liquid crystals including sponge (L3), bicontinuous cubic (V2), and lamella (Lalpha) phases. On the basis of SAXS measurements, we determined the structure of the liquid crystals. The estimated lattice constant for Lalpha was 3.58 nm. DSC measurement revealed that the phase transition enthalpies from the liquid crystal to the fluid isotropic phase were in the range of 0.22-0.44 kJ/mol. Although the present MEL-A phase diagram closely resembled that obtained from relatively hydrophobic poly(oxyethylene) or fluorinated surfactants, the MEL-A L3 region was spread considerably over a wide temperature range (20-65 degrees C) compared to L3 of those surfactants: this is probably due to the unique structure which is molecularly engineered by microorganisms. In this paper, we clarify the aqueous phase diagram of the natural glycolipid biosurfactant MEL-A, and we suggest that the obtained lyotropic crystals are potentially useful as novel nanostructured biomaterials.  相似文献   

4.
门永锋 《高分子科学》2013,31(9):1218-1224
Demixing and colloidal crystallization in the mixture of charge stabilized colloidal poly(methyl methacrylate) particles and soluble poly(ethylene oxide) were investigated by means of synchrotron small-angle X-ray scattering (SAXS) technique. Phase diagram of the mixture was obtained based on visual inspection and SAXS results. The phase behavior is determined as a function of the concentration of the polymer as well as the volume fraction of the colloidal particles. The system shows a one phase region when the concentration of the polymer is low, whereas a two-phase region is present when the concentration of the polymer is larger than a critical concentration at certain volume fraction of the colloids. Interestingly, a face centered cubic colloidal crystalline structure was formed under certain conditions, which has been rarely observed in experiments of colloid-polymer mixtures with competing interactions.  相似文献   

5.
The effect of poly(ethylene glycol) PEG crystallization on beta-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid beta peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M n = 3300 g mol (-1). It is found, via small-angle X-ray scattering, X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-beta amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.  相似文献   

6.
This paper presents an investigation of the phase diagram of BPTI (bovine pancreatic trypsin inhibitor)/350 mM KSCN at pH 4.9 by direct observation and numerical simulations. We report optical microscopy and light and X-ray scattering experiments coupled with theoretical data analysis using numerical tools. The phase diagram is thoroughly determined, as a function of temperature. Two polymorphs are observed by video microscopy and their solubility measured. In this phase diagram, the liquid-liquid phase separation (LLPS) is metastable with respect to the solid-liquid phase separation. Above the T(L-L) boundary curve, solutions are composed of a mixture of BPTI monomers and decamers. Attractive interactions are stronger between decamers than between monomers. Below the T(L-L) boundary curve, the dense phase is highly concentrated in protein and composed of BPTI decamers alone. Thus, the driving force for liquid-liquid or liquid-solid phase separation is the attraction between decamers at low pH. The structure factors of the dense phases are characteristic of repulsive dense phases because of a hard sphere repulsion core, meaning that in the dense phase proteins are actually in contact (interparticle distance of 53 A). In agreement with the Oswald rule of stages, LLPS occurs prior to and impedes the solid nucleation.  相似文献   

7.
The crystallization behavior of syndiotactic polystyrene (sPS) γ form undergoing annealing at various temperatures was investigated using the thermodynamic phase diagram based on Strobl's crystallization theory.On the basis of the differential scanning calorimetric results,it was observed that γ form melt-recrystallization occurred at a higher temperature with the increasing lamellar thickness,which resulted from the pre-annealing at the elevating temperature after acetone induced crystallization.Further temperature dependent small-angle X-ray scattering (SAXS) measurement revealed the evolution of the γ form lamellae upon heating until phase transition,involving three different regimes:lamellae stable region (25-90 ℃),melt-recrystallization region (90-185 ℃) and pre-phase transition region (185-195 ℃).As a result,recrystallization line,equilibrium recrystallization line and melting line were developed for the sPS γform crystallization process.Since the melt of γform involved a γto-α/β form phase transition,the melting line was also denoted as the phase transition line in this special case.Therefore,the equilibrium crystallization temperature and melting (phase transition)temperatures were determined at around 390 and 220 ℃ on the basis of the thermodynamic phase diagram of the sPS γform.  相似文献   

8.
The bactericidal mechanisms of poly(phenylene ethynylene) (PPE)-based cationic conjugated polyelectrolytes (CPE) and oligo-phenylene ethynylenes (OPE) were investigated using electron/optical microscopy and small-angle X-ray scattering (SAXS). The ultrastructural analysis shows that polymeric PPE-Th can significantly remodel the bacterial outer membrane and/or the peptidoglycan layer, followed by the possible collapse of the bacterial cytoplasm membrane. In contrast, oligomeric end-only OPE (EO-OPE) possesses potent bacteriolysis activity, which efficiently disintegrates the bacterial cytoplasm membrane and induces the release of bacterial cell content. Using single giant vesicles and SAXS, we demonstrated that the membrane perturbation mechanism of EO-OPE against model bacterial membranes results from a 3D membrane phase transition or perturbation.  相似文献   

9.
We study the self-assembly of a new family of amphiphilic liquid crystal (LC) copolymers synthesized by the anionic ring-opening polymerization of a new cholesterol-based LC monomer, 4-(cholesteryl)butyl ethyl cyclopropane-1,1-dicarboxylate. Using the t-BuP(4) phosphazene base and thiophenol or a poly(ethylene glycol) (PEG) functionalized with thiol group to generate in situ the initiator during the polymerization, LC homopolymer and amphiphilic copolymers with narrow molecular weight distributions were obtained. The self-assemblies of the LC monomer, homopolymer, and block copolymers in bulk and in solution were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and transmission electron microscopy (TEM). All polymers exhibit in bulk an interdigitated smectic A (SmA(d)) phase with a lamellar period of 4.6 nm. The amphiphilic copolymers self-organize in solution into vesicles with wavy membrane and nanoribbons with twisted and folded structures, depending on concentration and size of LC hydrophobic block. These new morphologies will help the comprehension of the fascinating organization of thermotropic mesophase in lyotropic structures.  相似文献   

10.
The interplay between liquid-liquid phase separation (LLPS) and crystallization at several compositions in statistical copolymer blends of poly(ethyleneco-hexene) and poly(ethylene-cobutene) has been examined by optical microscopy (OM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The phase contrast optical microscopy shows interconnected bicontinuous structures for deeply quenched LLPS, characteristic of spinodal decomposition. After a second quench to a temperature below the melting point, an overwhelming change in crystallization kinetics has been clearly observed, which is caused by the increase of the nucleation rate assisted by concentration fluctuations due to the spontaneous spinodal LLPS. We propose a new mechanism of "fluctuation assisted nucleation" in the crystallization process for such interactive process in a blend system. The experimental results from OM, AFM, and DSC measurements at various conditions are all consistent with the fluctuation assisted nucleation model.  相似文献   

11.
12.
Previously reported oligomeric PPSs prepared via the melt reaction of sulfur with excess p-diiodobenzene have been examined by optical microscopy and small-angle x-ray scattering (SAXS) techniques. A transition was seen from lamellar crystals for longer chains in the PPS samples of this work to a different type, which probably are extended chain crystals, occurring at about 20 DP. Spherulitic growth was observed optically for 38.8 DP and above. SAXS data established 31.8 DP as the point where a long period peak was first observed. The lamellar thickness of these bulk crystallized samples was established as about 50 Å which corresponds to a DP of 10. Maximum intensity of the SAXS peak increased with oligomer DP indicating increasing crystal perfection. Because of the random nature of the crystallization process, in PPS the average oligomer chain must be longer than three times this lamellar thickness to allow for folding and a spherulitic growth habit. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A surfactant featuring a polymerizable pyrrole head group (dodecyl-dimethyl-(2-pyrrol-1-yl-ethyl)-ammonium bromide, DDPABr) was synthesized. The thermotropic behavior of the surfactant was investigated by differential scanning calorimetry (DSC) and X-ray scattering techniques, with small-angle X-ray scattering (SAXS) analysis revealing a highly ordered lamellar bilayer structure. After full characterization, DDPABr was used in the preparation of mesostructured SiO2 nanocomposite thin films via evaporation-induced self-assembly (EISA). Resulting thin SiO2-DDPABr films were studied by 1D and 2D small-angle X-ray scattering (SAXS) techniques, indicating a lamellar nanocomposite structure. Suitable theoretical SAXS models were applied to fit the experimental 1D SAXS data. The surfactant could be chemically polymerized within the lamellar domains.  相似文献   

14.
Liu  W.  Kim  S.  Lopez  J.  Hsiao  B.  Keating  M. Y.  Lee  I.-H.  Landes  B.  Stein  R. S. 《Journal of Thermal Analysis and Calorimetry》2000,59(1-2):245-255
In this study, the stepwise isothermal crystallization or thermal fractionation of Ziegler—Natta and metallocene based polyethylenes (ZN-PE and m-PE) with two kinds of branch lengths (ethyl and hexyl) and branch compositions were studied using simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The crystal long period and the invariant were determined by SAXS, and the variations of crystal unit cell parameters and the degree of crystallinity were determined by WAXD. The arithmetic mean length (Ln), the weightedmean length (Lw) and the broadness index (Lw/Ln) of the studied polyethylenes were previously determined by DSC. Results from these studies were interpreted using the model of branch exclusion, which affects the ability of the chain-reentry into the crystal phase. Multiple SAXS peaks and step-change in crystallinity change (WAXD) were seen during heating, which corresponded well with the crystal thickness distribution induced by stepwise crystallization. The effects of the heterogeneity of the 1-olefin branch length and the distribution on the crystal long period and the invariant as well as the degree of crystallinity were discussed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
The relationships among glass transition, crystallization, melting, and crystal morphology of poly(aryl ether ketone) (PAEK)/poly(other imide) (PEI) blends was studied by thermal, optical and small-angle x-ray scattering (SAXS) methods. Two types of PAEK were chosen for this work: poly(aryl ether ether ketone), PEEK, and poly(aryl ether ketone ketone), PEKK, which have distinctly different crystallization rates. Both PAEKs show complete miscibility with PEI in the amorphous phase. As PAEK crystallizes, the noncrystallizable PEI component is rejected from the crystalline region, resulting in a broad amorphous population, which was indicated by the broadening and the increase of Tg over that of the purely amorphous mixture. The presence of the PEI component significantly decreases the bulk crystallization and crystal growth rate of PAEK, but the equilibrium melting temperature and crystal surface free energies are not affected. The morphology of the PEI segregation was investigated by SAXS measurements. The results indicated that the inter(lamellar-bundle) PEI trapping morphology was dominant in the PEEK/PEI blends under rapid crystallization conditions, whereas the interspherulitic morphology was dominant in the slow crystallizing PEKK/PEI blends. These morphologies were qualitatively explained by the expression δ=D/G, where G was the crystal growth rate and D was the mutual diffusion coefficient. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
For the first time, quantitative analyses of the crystallization kinetics, surface free energy of chain folding, and morphology in phenolic/poly(ϵ-caprolactone) (PCL) binary blends have been studied. The spherulite growth rate and the overall crystallization rate depend on the crystallization temperature and PCL content in the blend. In addition, the crystallization and melting temperatures of the PCL phase decrease with an increase in the phenolic content. An Avrami analysis shows that the addition of phenolic to PCL results in a decrease in the overall crystallization rate of the PCL phase. The presence of an amorphous phenolic phase results in a reduction in the rate of the spherulite growth of PCL. The surface free energy of folding increases with increasing phenolic content, and the crystal thickness of a phenolic/PCL blend, according to small-angle X-ray scattering (SAXS), is greater than that of pure PCL because of the increase in the surface free energy of chain folding and the decrease in the degree of supercooling. The observed domain size of the crystalline/amorphous phase (5.9 nm) from SAXS is also consistent with that from solid-state NMR (3–20 nm). All these results indicate that the crystallization ability of PCL decreases with increasing phenolic content in the blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 117–128, 2004  相似文献   

17.
The crystallization behavior of a series of poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) triblock copolymers (Pluronics) was investigated using time-resolved small-angle X-ray scattering (SAXS), thermal analysis, and polarized optical microscopy. For comparison, a PEO homopolymer, PEO3K, was also included. Time-resolved SAXS during the crystallization of PEO3K shows a typical “two-step” process, i.e., in the initial stage, a metastable crystal with nonintegral folding (NIF) structure forms first, then, it transforms into integral folding (IF) structures, the IF(0) and the IF(1). In contrast with PEO3K, the PEO–PPO–PEO triblock copolymers show a “one-step” crystallization process, i.e., the PEO blocks crystallize directly into the final state and do not change with time. In thermal analysis, only one major solid–melt transition is observed during isothermal crystallization and subsequent melting for triblock copolymers. In the full temperature range, a linear crystal growth is observed. The crystal growth rates monotonously decrease with crystallization temperatures. Notches or breaks due to the NIF–IF transition as clearly seen for PEO3K cannot be recognized for Pluronics. Based on these results, we conclude that the crystallization of PEO–PPO–PEO triblock copolymers follows a “one-step” process; no metastable structure serving as an intermediate state is formed during the crystallization process within the time scale of the current experiments (<120 min).  相似文献   

18.
Microstructural changes occurring during the process of crystallization in as-spun poly(ethylene terephthalate) (PET) have been monitored using wide- and small-angle X-ray scattering, optical birefringence, shrinkage measurements, and specific gravity. Shrinkage and birefringence results show a competition between two processes: chain re-coiling on the one hand and crystallization on the other hand. A consistent correlation among WAXS, SAXS, shrinkage, and birefringence results is demonstrated. SAXS data show a fibrillar morphology. On the basis of WAXS results, the crystallization is envisioned as a two stage process: first, the formation of defective fibrils, and then the formation of more perfect crystals. WAXS results also demonstrate a remelting phenomenon in samples which have experienced positive shrinking.  相似文献   

19.
Precursor silica nanoparticles can evolve to silicalite-1 crystals under hydrothermal conditions in the presence of tetrapropylammonium (TPA) cations. It has been proposed that in relatively dilute sols of silica, TPA, water, and ethanol, silicalite-1 growth is preceded by precursor nanoparticle evolution and then occurs by oriented aggregation. Here, we present a study of silicalite-1 crystallization in more concentrated mixtures and propose that growth follows a path similar to that taken in the dilute system. Small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and high-resolution transmission electron microscopy (HRTEM) were used to measure nanoparticle size and to monitor zeolite nucleation and early-stage crystal development. The precursor silica nanoparticles, present in the clear sols prior to crystal formation, were characterized using two SAXS instruments, and the influence of interparticle interactions is discussed. In addition, SAXS was used to detect the onset of secondary particle formation, and HRTEM was used to characterize their structure and morphology. Cryo-TEM allowed for in situ visual observation of the nanoparticle population. Combined results are consistent with growth by aggregation of silica nanoparticles and of the larger secondary crystallites. Finally, a unique intergrowth structure that was formed during the more advanced growth stages is reported, lending additional support for the proposal of aggregative growth.  相似文献   

20.
Crystal and phase morphologies and structures determined by self-organization of crystalline-amorphous diblockcopolymers, crystallization of the crystallizable blocks, and vitrification of the amorphous blocks are reviewed through asystematic study on a series of poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers. On the base ofcompetitions among these three processes, molecular and supramolecular ordering in confined environments can beinvestigated. In a concentration-fluctuation-induced disordered (D_(CF)) diblock copolymer, the competition between crystalli-zation of the PEO blocks and vitrification of the PS blocks is momtored by time-resolved simultaneous small angle X-rayscattering (SAXS) and wide angle X-ray diffraction (WAXD) techniques. In the case of T_c相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号